1 CDlib Dev Team 3
Python Module Index 133
Index 135
CDlib is a Python software package that allows to extract, compare and evaluate communities from complex networks.

The library provides a standardized input/output for several existing Community Discovery algorithms. The implementations of all CD algorithms are inherited from existing projects, each one of them acknowledged in the dedicated method reference page.

<table>
<thead>
<tr>
<th>Date</th>
<th>Python Versions</th>
<th>Main Author</th>
<th>GitHub</th>
<th>pypl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-12-18</td>
<td>3.7-3.8</td>
<td>Giulio Rossetti</td>
<td>Source</td>
<td></td>
</tr>
</tbody>
</table>
1. Overview

CDlib is a Python language software package for the extraction, comparison, and evaluation of communities from complex networks.

1.1.1 Who uses CDlib?

The potential audience for CDlib includes mathematicians, physicists, biologists, computer scientists, and social scientists.

1.1.2 Goals

CDlib is built upon the NetworkX python library and is intended to provide:

- a standard programming interface and community discovery implementations that are suitable for many applications,
- a rapid development environment for collaborative, multidisciplinary, projects.
1.1.3 The Python CDlib library

CDlib is a powerful Python package that allows simple and flexible partitioning of complex networks. Most importantly, CDlib, as well as the Python programming language, is free, well-supported, and a joy to use.

1.1.4 Free software

CDlib is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome contributions from the community.

1.1.5 EU H2020

CDlib is a result of an European H2020 project:
 • SoBigData “Social Mining & Big Data Ecosystem”: under the scheme “INFRAIA-1-2014-2015: Research Infrastructures”, grant agreement #654024.

1.2 Download

1.2.1 Software

Source and binary releases: https://pypi.python.org/pypi/cdlib
Github (latest development): https://github.com/GiulioRossetti/cdlib

1.2.2 Documentation

1.3 Installing CDlib

Before installing CDlib, you need to have setuptools installed.

1.3.1 Quick install

Get CDlib from the Python Package Index at pypl.

or install it with

```
pip install cdlib
```

and an attempt will be made to find and install an appropriate version that matches your operating system and Python version.

You can install the development version with

```
pip install git://github.com/GiulioRossetti/cdlib.git
```
1.3.2 Optional Dependencies

CDlib relies on a few packages calling C code (namely: python-igraph, leidenalg, angel_cd and infomap). The default installation will not set up such requirements since their configuration under non unix-like systems is not trivial and cannot be easily automated.

Such a choice has been made to allow (even) Windows user to install the library and get access to its core functionalities.

To made available (most of) the optional packages you can either:

- (Windows) manually install the optional packages (versions details are specified in requirements_optional.txt) following the original projects guidelines, or
- (Linux/OSX) run the command:

  ```
  pip install cdlib[C]
  ```

Such caveat will install everything that can be easily automated under Linux/OSX.

(Advanced) Graph-tool

The only optional dependency that will remain unsatisfied following the previous procedures will be graph-tool (used to add SBM models). If you need it up and running, refer to the official documentation.

1.3.3 Installing from source

You can install from source by downloading a source archive file (tar.gz or zip) or by checking out the source files from the GitHub source code repository.

CDlib is a pure Python package; you don’t need a compiler to build or install it.

Source archive file

Download the source (tar.gz or zip file) from pypl or get the latest development version from GitHub

Unpack and change directory to the source directory (it should have the files README.txt and setup.py).

Run python setup.py install to build and install

GitHub

Clone the CDlib repository (see GitHub for options)

```
  git clone https://github.com/GiulioRossetti/cdlib.git
```

Change directory to CDlib

Run python setup.py install to build and install

If you don’t have permission to install software on your system, you can install into another directory using the –user, –prefix, or –home flags to setup.py.

For example

```python
  python setup.py install --prefix=/home/username/python
```
or

```
python setup.py install --home=~
```

or

```
python setup.py install --user
```

If you didn’t install in the standard Python site-packages directory you will need to set your PYTHONPATH variable to the alternate location. See http://docs.python.org/2/install/index.html#search-path for further details.

1.3.4 Requirements

Python

To use CDlib you need Python 3.6 or later.

The easiest way to get Python and most optional packages is to install the Enthought Python distribution “Canopy” or using Anaconda.

There are several other distributions that contain the key packages you need for scientific computing.

1.4 Tutorial

NClib is built upon networkx and is designed to extract, compare and evaluate network partitions.

You can find a few basilar examples to get started with cdlib in this notebook.

1.5 Reference

CDlib composes of several modules, each one fulfilling a different task related to community detection.

1.5.1 Community Objects

cdlib provides data structures and methods for storing communities.

The choice of community class depends on the structure of the community generated by the selected algorithm.

Which community should I use?

<table>
<thead>
<tr>
<th>Community Type</th>
<th>cdlib class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Partition</td>
<td>NodeClustering, FuzzyNodeClustering, AttrNodeClustering, BiNodeClustering</td>
</tr>
<tr>
<td>Edge Partition</td>
<td>EdgeClustering</td>
</tr>
</tbody>
</table>
Community Types

Node Clustering

Overview

class NodeClustering(communities, graph, method_name, method_parameters=None, overlap=False)

Node Communities representation.

Parameters

• communities – list of communities
• graph – a networkx/igraph object
• method_name – community discovery algorithm name
• method_parameters – configuration for the community discovery algorithm used
• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)

Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings U and V, the AMI is given as:

\[\text{AMI}(U, V) = \frac{\text{MI}(U, V) - E(\text{MI}(U, V))}{\max(H(U), H(V)) - E(\text{MI}(U, V))} \]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)
```

Reference

adjusted_rand_index (clustering)

Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

\[
ARI = \frac{(RI - \text{Expected}_RI)}{(\text{max}(RI) - \text{Expected}_RI)}
\]

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

\[
\text{adjusted_rand_index}(a, b) = \text{adjusted_rand_index}(b, a)
\]

Parameters clustering – NodeClustering object

Returns ARI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)
```

Reference

average_internal_degree (**kwargs)

The average internal degree of the algorithms set.

\[
f(S) = \frac{2m_S}{n_S}
\]

where \(m_S \) is the number of algorithms internal edges and \(n_S \) is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()
```

avg_odf (**kwargs)

Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[
\frac{1}{n_S} \sum_{u \in S} \frac{|\{(u, v) \in E : v \notin S\}|}{d(u)}
\]
where E is the graph edge set, v is a node in S, $d(u)$ is the degree of u and n_S is the set of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> pur = communities.purity()
```

conductance (**kwargs**)

Fraction of total edge volume that points outside the algorithms.

\[
f(S) = \frac{c_S}{2m_S + c_S}
\]

where c_S is the number of algorithms nodes and, m_S is the number of algorithms edges

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()
```

cut_ratio (**kwargs**)

Fraction of existing edges (out of all possible edges) leaving the algorithms.

\[f(S) = \frac{c_S}{n_S(n_S)} \]

where c_S is the number of algorithms nodes and, n_S is the number of edges on the algorithms boundary

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

edges_inside (**kwargs**)

Number of edges internal to the algorithms.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```
```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()
```

erdos_renyi_modularity()

Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are connected randomly with a constant probability p.

$$Q(S) = \frac{1}{m} \sum_{c \in S} (m_S m_n (n_S^1))$$

where m is the number of graph edges, m_S is the number of algorithms edges, l_S is the number of edges from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()
```

References

expansion (**kwargs)

Number of edges per algorithms node that point outside the cluster.

$$f(S) = \frac{c_S}{n_S}$$

where n_S is the number of edges on the algorithms boundary, c_S is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()
```

f1 (clustering)

Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example
```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)
```

Reference

flake_odf(kwargs)**

Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

$$f(S) = \left| \left\{ u : u \in S, |\{(u,v) \in E : v \in S\}| < \frac{d(u)}{2} \right\} \right|_S$$

where E is the graph edge set, v is a node in S, $d(u)$ is the degree of u and n_S is the set of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()
```

fraction_over_median_degree(kwargs)**

Fraction of algorithms nodes of having internal degree higher than the median degree value.

$$f(S) = \left| \left\{ u : u \in S, |\{(u,v) : v \in S\}| > d_m \right\} \right|_S$$

where d_m is the internal degree median value

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

get_description(parameters_to_display=None, precision=3)**

Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

- **parameters_to_display** – parameters to display. By default, all float parameters.
- **precision** – precision used to plot parameters. default: 3
Returns a string description of the method.

`internal_edge_density(**kwargs)`

The internal density of the algorithms set.

\[
f(S) = \frac{m_S}{n_S(n_S - 1) / 2}
\]

where \(m_S\) is the number of algorithms internal edges and \(n_S\) is the number of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()
```

`link_modularity()`

Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

```python
>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()
```

`max_odf(**kwargs)`

Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[
max_{u \in S} \frac{|\{(u, v) \in E : v \not\in S\}|}{d(u)}
\]

where \(E\) is the graph edge set, \(v\) is a node in \(S\) and \(d(u)\) is the degree of \(u\)

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()
```

`modularity_density()`

The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures. The idea of this metric is to include the information about algorithms size into the expected density of algorithms to avoid the negligence of small and dense communities. For each algorithms \(C\) in partition \(S\), it uses the average modularity degree calculated by \(d(C) = d^{int}(C) \cdot d^{ext}(C)\)
where \(d^{\text{int}}(C) \) and \(d^{\text{ext}}(C) \) are the average internal and external degrees of \(C \) respectively to evaluate the fitness of \(C \) in its network. Finally, the modularity density can be calculated as follows:

\[
Q(S) = \frac{1}{n_C} \sum_{C \in S} \left(\sum_{i \in C} k^{\text{int}}_{iC} - \sum_{i \in C} k^{\text{out}}_{iC} \right)
\]

where \(n_C \) is the number of nodes in \(C \), \(k^{\text{int}}_{iC} \) is the degree of node \(i \) within \(C \) and \(k^{\text{out}}_{iC} \) is the deree of node \(i \) outside \(C \).

Returns the modularity density score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()
```

References

newman_girvan_modularity()

Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph under consideration. In other words, the modularity compares the real network structure with a corresponding one where nodes are connected without any preference about their neighbors.

\[
Q(S) = \frac{1}{m} \sum_{C \in S} \left(m_S - \frac{(2m_S + l_S)^2}{4m} \right)
\]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms edges, \(l_S \) is the number of edges from nodes in \(S \) to nodes outside \(S \).

Returns the Newman-Girvan modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()
```

References

nf1(clustering)

Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example
```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_cut()
```

Reference

normalized_cut(kwargs)**

Normalized variant of the Cut-Ratio

\[
f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(mm_S) + c_S}
\]

where \(m\) is the number of graph edges, \(m_S\) is the number of algorithms internal edges and \(c_S\) is the number of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

- a FitnessResult object

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()
```

normalized_mutual_information(clustering)

Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by \(\sqrt{H(labels_{true}) \times H(labels_{pred})}\)

Parameters

- **clustering** – NodeClustering object

Returns

- normalized mutual information score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)
```

omega(clustering)

Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters

- **clustering** – NodeClustering object

Returns

- omega index
Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)
```

Reference

`overlapping_normalized_mutual_information_LFK(clustering)`

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichinetti et al.

Parameters
- `clustering` – NodeClustering object

Returns
- omni score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_communities)
```

Reference

`overlapping_normalized_mutual_information_MGH(clustering, normalization='max')`

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details.

Parameters
- `clustering` – NodeClustering object
- `normalization` – one of “max” or “LFK”. Default “max” (corresponds to the main method described in the article)

Returns
- omni score

Example
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities, leiden_communities)

References

significance()

Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()
```

size(kwargs**)**

Size is the number of nodes in the community

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example:

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()
```

surprise()

Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random realization, the better the quality of the algorithms structure.

Returns the surprise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()
```
References

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object
to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>
triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

\[
f(S) = \frac{|\{u : u \in S, \{(v, w) : v, w \in S, (u, v) \in E, (u, w) \in E, (v, w) \in E\} \neq \emptyset\}|}{n_S}
\]

where \(n_S\) is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()
```

variation_of_information(clustering)
Variation of Information among two nodes partitions.

\[
H(p)+H(q)-2MI(p, q)
\]

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)
```

Reference

z_modularity()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept of this version is based on an observation that the difference between the fraction of edges inside
community and the expected number of such edges in a null model should not be considered as the only contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()
```

References

Methods

Data transformation and IO

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>NodeClustering.to_json()</code></td>
<td>Generate a JSON representation of the algorithms object</td>
</tr>
<tr>
<td><code>NodeClustering.to_node_community_map()</code></td>
<td>Generate a <code><node, list(communities)></code> representation of the current clustering</td>
</tr>
</tbody>
</table>

Evaluating Node Clustering

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>NodeClustering.link_modularity(**kwargs)</code></td>
<td>Quality function designed for directed graphs with overlapping communities.</td>
</tr>
<tr>
<td><code>NodeClustering.normalized_cut(**kwargs)</code></td>
<td>Normalized variant of the Cut-Ratio</td>
</tr>
<tr>
<td><code>NodeClustering.internal_edge_density(**kwargs)</code></td>
<td>Internal density of the algorithms set.</td>
</tr>
<tr>
<td><code>NodeClustering.average_internal_degree(**kwargs)</code></td>
<td>Average internal degree of the algorithms set.</td>
</tr>
<tr>
<td><code>NodeClustering.fraction_over_median_degree(**kwargs)</code></td>
<td>Fraction of algorithms nodes of having internal degree higher than the median degree value.</td>
</tr>
<tr>
<td><code>NodeClustering.expansion(**kwargs)</code></td>
<td>Number of edges per algorithms node that point outside the cluster.</td>
</tr>
<tr>
<td><code>NodeClustering.cut_ratio(**kwargs)</code></td>
<td>Fraction of existing edges (out of all possible edges) leaving the algorithms.</td>
</tr>
<tr>
<td><code>NodeClustering.edges_inside(**kwargs)</code></td>
<td>Number of edges internal to the algorithms.</td>
</tr>
<tr>
<td><code>NodeClustering.conductance(**kwargs)</code></td>
<td>Fraction of total edge volume that points outside the algorithms.</td>
</tr>
<tr>
<td><code>NodeClustering.max_odf(**kwargs)</code></td>
<td>Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.</td>
</tr>
<tr>
<td><code>NodeClustering.avg_odf(**kwargs)</code></td>
<td>Average fraction of edges of a node of a algorithms that point outside the algorithms itself.</td>
</tr>
<tr>
<td><code>NodeClustering.flake_odf(**kwargs)</code></td>
<td>Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.</td>
</tr>
<tr>
<td><code>NodeClustering.triangle_participation_ratio(**kwargs)</code></td>
<td>Fraction of algorithms nodes that belong to a triad.</td>
</tr>
</tbody>
</table>
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodeClustering.newman_girvan_modularity()</td>
<td>Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.</td>
</tr>
<tr>
<td>NodeClustering.erdos_renyi_modularity()</td>
<td>Erdos-Renyi modularity is a variation of the Newman-Girvan one.</td>
</tr>
<tr>
<td>NodeClustering.modularity_density()</td>
<td>The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures.</td>
</tr>
<tr>
<td>NodeClustering.z_modularity()</td>
<td>Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit.</td>
</tr>
<tr>
<td>NodeClustering.surprise()</td>
<td>Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.</td>
</tr>
<tr>
<td>NodeClustering.significance()</td>
<td>Significance estimates how likely a partition of dense communities appear in a random graph.</td>
</tr>
</tbody>
</table>

Comparing Node Clusterings

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodeClustering.normalized_mutual_information()</td>
<td>Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td>NodeClustering.overlapping_normalized_mutual_information_MGH()</td>
<td>Overlapping Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td>NodeClustering.overlapping_normalized_mutual_information_LFK()</td>
<td>Overlapping Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td>NodeClustering.omega(clustering)</td>
<td>Index of resemblance for overlapping, complete coverage, network clusterings.</td>
</tr>
<tr>
<td>NodeClustering.f1(clustering)</td>
<td>Compute the average F1 score of the optimal algorithms matches among the partitions in input.</td>
</tr>
<tr>
<td>NodeClustering.nf1(clustering)</td>
<td>Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input.</td>
</tr>
<tr>
<td>NodeClustering.adjusted_rand_index(clustering)</td>
<td>Rand index adjusted for chance.</td>
</tr>
<tr>
<td>NodeClustering.adjusted_mutual_information()</td>
<td>Adjusted Mutual Information between two clusterings.</td>
</tr>
<tr>
<td>NodeClustering.variation_of_information()</td>
<td>Variation of Information among two nodes partitions.</td>
</tr>
</tbody>
</table>

Fuzzy Node Clustering

Overview

```python
class FuzzyNodeClustering(communities, node_allocation, graph, method_name, method_parameters=None, overlap=False) |
Fuzzy Node Communities representation.
```

Parameters

- **communities** – list of communities
- **node_allocation** – dictionary specifying for each node the allocation of probability toward the communities it is placed in
- **graph** – a networkx/igraph object
- **method_name** – community discovery algorithm name

1.5. Reference
• method_parameters – configuration for the community discovery algorithm used
• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)

Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings \(U\) and \(V\), the AMI is given as:

\[
AMI(U, V) = \frac{MI(U, V) - E(MI(U, V))}{\max(H(U), H(V)) - E(MI(U, V))}
\]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)
```

Reference

adjusted_rand_index(clustering)

Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

\[
ARI = \frac{RI - Expected_RI}{\max(RI) - Expected_RI}
\]

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

\[
adjusted_rand_index(a, b) == adjusted_rand_index(b, a)
\]

Parameters clustering – NodeClustering object
Returns ARI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)
```

Reference

average_internal_degree(**kwargs)

The average internal degree of the algorithms set.

\[f(S) = \frac{2m_S}{n_S} \]

where \(m_S \) is the number of algorithms internal edges and \(n_S \) is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()
```

avg_odf(**kwargs)

Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[\frac{1}{n_S} \sum_{u \in S} \frac{|\{(u, v) \in E : v \notin S\}|}{d(u)} \]

where \(E \) is the graph edge set, \(v \) is a node in \(S \), \(d(u) \) is the degree of \(u \) and \(n_S \) is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = evo(g, alpha=alpha)
>>> pur = communities.purity()
```

conductance(**kwargs)

Fraction of total edge volume that points outside the algorithms.

\[f(S) = \frac{c_S}{2m_S + c_S} \]
where \(c_S \) is the number of algorithms nodes and, \(m_S \) is the number of algorithms edges.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

- a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()
```

cut_ratio(**kwargs**)**

Fraction of existing edges (out of all possible edges) leaving the algorithms.

\[
f(S) = \frac{c_S}{n_S (n - n_S)}
\]

where \(c_S \) is the number of algorithms nodes and, \(n_S \) is the number of edges on the algorithms boundary.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

- a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

edges_inside(**kwargs**)**

Number of edges internal to the algorithms.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

- a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()
```

erdos_renyi_modularity()

Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are connected randomly with a constant probability \(p \).

\[
Q(S) = \frac{1}{m} \sum_{c \in S} \left(m_S \frac{mn_S(n - n_S)}{n(n - 1)} \right)
\]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms edges, \(l_S \) is the number of edges from nodes in \(S \) to nodes outside \(S \).

Returns

- the Erdos-Renyi modularity score

Example

```python
```
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

expansion(**kwargs)
Number of edges per algorithms node that point outside the cluster.

\[f(S) = \frac{c_S}{n_S} \]

where \(n_S \) is the number of edges on the algorithms boundary, \(c_S \) is the number of algorithms nodes.

Parameters

summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters

clustering – NodeClustering object

Returns

F1 score (harmonic mean of precision and recall)

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)

Reference

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

\[f(S) = \frac{|\{u: u \in S, |\{(u, v) \in E : v \in S\}| < d(u)/2\}|}{n_S} \]

where \(E \) is the graph edge set, \(v \) is a node in \(S \), \(d(u) \) is the degree of \(u \) and \(n_S \) is the set of algorithms nodes.

1.5. Reference
Parameters
summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

fraction_over_median_degree(kwargs**)

Fraction of algorithms nodes of having internal degree higher than the median degree value.

\[
f(S) = \frac{|\{u : u \in S, |\{(u, v) : v \in S\}| > d_m\}|}{n_S}
\]

where \(d_m\) is the internal degree median value

Parameters
summary – (optional, default: True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

get_description(parameters_to_display=None, precision=3)

Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

- **parameters_to_display** – parameters to display. By default, all float parameters.
- **precision** – precision used to plot parameters. default: 3

Returns
a string description of the method.

internal_edge_density(**kwargs**)

The internal density of the algorithms set.

\[
f(S) = \frac{m_S}{n_S(n_S-1)/2}
\]

where \(m_S\) is the number of algorithms internal edges and \(n_S\) is the number of algorithms nodes.

Parameters
summary – (optional, default: True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()
```
link_modularity()

Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

```python
>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()
```

max_odf(**kwargs)

Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[
max_{u \in S} \frac{|\{(u, v) \in E : v \notin S\}|}{d(u)}
\]

where \(E\) is the graph edge set, \(v\) is a node in \(S\) and \(d(u)\) is the degree of \(u\).

Parameters

- `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()
```

modularity_density()

The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures. The idea of this metric is to include the information about algorithms size into the expected density of algorithms to avoid the negligence of small and dense communities. For each algorithms \(C\) in partition \(S\), it uses the average modularity degree calculated by \(d(C) = d_{int}(C) d_{ext}(C)\) where \(d_{int}(C)\) and \(d_{ext}(C)\) are the average internal and external degrees of \(C\) respectively to evaluate the fitness of \(C\) in its network. Finally, the modularity density can be calculated as follows:

\[
Q(S) = \sum_{C \in S} \frac{1}{n_C} \left(\sum_{i \in C} k_{int}^i - \sum_{i \in C} k_{out}^i \right)
\]

where \(n_C\) is the number of nodes in \(C\), \(k_{int}^i\) is the degree of node \(i\) within \(C\) and \(k_{out}^i\) is the degree of node \(i\) outside \(C\).

Returns the modularity density score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()
```

References

newman_girvan_modularity()

Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph under consideration. In other words, the modularity compares the real network structure with a corresponding one where nodes are connected without any preference about their neighbors.

\[Q(S) = \frac{1}{m} \sum_{c \in S} (m_S - \frac{(2m_S + l_S)^2}{4m}) \]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms edges, \(l_S \) is the number of edges from nodes in \(S \) to nodes outside \(S \).

Returns the Newman-Girvan modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()
```

References

nf1 (clustering)

Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)
```

Reference

normalized_cut(**kwargs)

Normalized variant of the Cut-Ratio

\[f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(mm_S) + c_S} \]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms internal edges and \(c_S \) is the number of algorithms nodes.
Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()
```

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by \(\sqrt{H(labels_true) \times H(labels_pred)} \)

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)
```

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)
```

Reference

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichinetti et al.

Parameters clustering – NodeClustering object
Returns onmi score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized Mutual_information_lFK(leiden_communities)
```

Reference

`overlapping_normalized Mutual_information_MGH` *(clustering, normalization=’max’)*

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details.

Parameters

- `clustering` – NodeClustering object
- `normalization` – one of “max” or “LFK”. Default “max” (corresponds to the main method described in the article)

Returns onmi score

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized Mutual_information_MGH(louvain_communities,leiden_communities)
```


`significance()`

Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()
```

References

size(kwargs)**
Size is the number of nodes in the community

Parameters
- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example:
```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()
```

surprise()
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random realization, the better the quality of the algorithms structure.

Returns
the surprise score

Example
```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()
```

References

to_json()
Generate a JSON representation of the algorithms object

Returns
a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns
dict of the form <node, list(communities)>

triangle_participation_ratio(kwargs)**
Fraction of algorithms nodes that belong to a triad.

\[
f(S) = \left| \left\{ u : u \in S, \{(v, w) : v, w \in S, (u, v) \in E, (u, w) \in E, (v, w) \in E \} \neq \emptyset \right\} \right| / n_S
\]

where \(n_S \) is the set of algorithms nodes.

Parameters
- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example
variation_of_information (clustering)

Variation of Information among two nodes partitions.

\[H(p)+H(q)-2MI(p, q) \]

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.variation_of_information(leiden_communities)
```

Reference

z_modularity()

Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept of this version is based on an observation that the difference between the fraction of edges inside communities and the expected number of such edges in a null model should not be considered as the only contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()
```

References

Methods

Data transformation and IO

FuzzyNodeClustering.to_json() Generate a JSON representation of the algorithms object

Continued on next page
Table 4 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_node_community_map()</code></td>
<td>Generate a <code><node, list(communities)></code> representation of the current clustering</td>
</tr>
</tbody>
</table>

Evaluating Node Clustering

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>link_modularity()</code></td>
<td>Quality function designed for directed graphs with overlapping communities.</td>
</tr>
<tr>
<td><code>normalized_cut(**kwargs)</code></td>
<td>Normalized variant of the Cut-Ratio</td>
</tr>
<tr>
<td><code>internal_edge_density(...)</code></td>
<td>The internal density of the algorithms set.</td>
</tr>
<tr>
<td><code>average_internal_degree(...)</code></td>
<td>The average internal degree of the algorithms set.</td>
</tr>
<tr>
<td><code>fraction_over_median_degree(...)</code></td>
<td>Fraction of algorithms nodes of having internal degree higher than the median degree value.</td>
</tr>
<tr>
<td><code>expansion(**kwargs)</code></td>
<td>Number of edges per algorithms node that point outside the cluster.</td>
</tr>
<tr>
<td><code>cut_ratio(**kwargs)</code></td>
<td>Fraction of existing edges (out of all possible edges) leaving the algorithms.</td>
</tr>
<tr>
<td><code>edges_inside(**kwargs)</code></td>
<td>Number of edges internal to the algorithms.</td>
</tr>
<tr>
<td><code>conductance(**kwargs)</code></td>
<td>Fraction of total edge volume that points outside the algorithms.</td>
</tr>
<tr>
<td><code>max_odf(**kwargs)</code></td>
<td>Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.</td>
</tr>
<tr>
<td><code>avg_odf(**kwargs)</code></td>
<td>Average fraction of edges of a node of a algorithms that point outside the algorithms itself.</td>
</tr>
<tr>
<td><code>flake_odf(**kwargs)</code></td>
<td>Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.</td>
</tr>
<tr>
<td><code>triangle_participation_ratio(...)</code></td>
<td>Fraction of algorithms nodes that belong to a triad.</td>
</tr>
<tr>
<td><code>newman_girvan_modularity()</code></td>
<td>Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.</td>
</tr>
<tr>
<td><code>erdos_renyi_modularity()</code></td>
<td>Erdos-Renyi modularity is a variation of the Newman-Girvan one.</td>
</tr>
<tr>
<td><code>modularity_density()</code></td>
<td>The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures.</td>
</tr>
<tr>
<td><code>z_modularity()</code></td>
<td>Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit.</td>
</tr>
<tr>
<td><code>surprise()</code></td>
<td>Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.</td>
</tr>
<tr>
<td><code>significance()</code></td>
<td>Significance estimates how likely a partition of dense communities appear in a random graph.</td>
</tr>
</tbody>
</table>

Attributed Node Clustering
Overview

class AttrNodeClustering(community, graph, method_name, coms_labels=None, method_parameters=None, overlap=False)

Attribute Node Communities representation.

Parameters

- communities – list of communities
- graph – a networkx/igraph object
- method_name – community discovery algorithm name
- coms_labels – dictionary specifying for each community the frequency of the attribute values
- method_parameters – configuration for the community discovery algorithm used
- overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)

Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings U and V, the AMI is given as:

$$AMI(U, V) = \frac{MI(U, V) - E(MI(U, V))}{\max(H(U), H(V)) - E(MI(U, V))}$$

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)
```

Reference

adjusted_rand_index(clustering)

Rand index adjusted for chance.
The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

$$\text{ARI} = \frac{(RI - \text{Expected}_RI)}{(\max(RI) - \text{Expected}_RI)}$$

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:

$$\text{adjusted_rand_index}(a, b) = \text{adjusted_rand_index}(b, a)$$

Parameters clustering – NodeClustering object

Returns ARI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)
```

Reference

average_internal_degree(kwargs**)**

The average internal degree of the algorithms set.

$$f(S) = \frac{2m_S}{n_S}$$

where m_S is the number of algorithms internal edges and n_S is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()
```

avg_odf(kwargs**)**

Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

$$\frac{1}{n_S} \sum_{u \in S} \frac{|\{(u, v) \in E : v \not\in S\}|}{d(u)}$$

where E is the graph edge set, v is a node in S, $d(u)$ is the degree of u and n_S is the set of algorithms nodes.
Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

conductance(**kwargs)

Fraction of total edge volume that points outside the algorithms.

\[f(S) = \frac{c_S}{2m_S + c_S} \]

where \(c_S\) is the number of algorithms nodes and, \(m_S\) is the number of algorithms edges

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

cut_ratio(**kwargs)

Fraction of existing edges (out of all possible edges) leaving the algorithms.

.. math:: f(S) = \frac{c_S}{n_S (n - n_S)}

where \(c_S\) is the number of algorithms nodes and, \(n_S\) is the number of edges on the algorithms boundary

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

edges_inside(**kwargs)

Number of edges internal to the algorithms.

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()

erdos_renyi_modularity()

Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are connected randomly with a constant probability p.

$$Q(S) = \frac{1}{m} \sum_{c \in S} (m_S m_{S\overline{S}} n_{S\overline{S}})$$

where m is the number of graph edges, m_S is the number of algorithms edges, l_S is the number of edges from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()
```

References

expansion(**kwargs**)

Number of edges per algorithms node that point outside the cluster.

$$f(S) = \frac{c_S}{n_S}$$

where n_S is the number of edges on the algorithms boundary, c_S is the number of algorithms nodes.

Parameters summary -- (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()
```

f1(clustering)

Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering -- NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example
Reference

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

\[f(S) = \frac{|\{u \in S, |\{(u, v) \in E : v \in S\}| < d(u)/2\}|}{n_S} \]

where \(E \) is the graph edge set, \(v \) is a node in \(S \), \(d(u) \) is the degree of \(u \) and \(n_S \) is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()
```

fraction_over_median_degree(**kwargs)
Fraction of algorithms nodes of having internal degree higher than the median degree value.

\[f(S) = \frac{|\{u \in S, |\{(u, v) : v \in S\}| > d_m\}|}{n_S} \]

where \(d_m \) is the internal degree median value

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

generate_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

- **parameters_to_display** – parameters to display. By default, all float parameters.
- **precision** – precision used to plot parameters. default: 3
Returns a string description of the method.

internal_edge_density(kwargs)**

The internal density of the algorithms set.

\[f(S) = \frac{m_S}{n_S(n_S - 1)/2} \]

where \(m_S \) is the number of algorithms internal edges and \(n_S \) is the number of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()
```

link_modularity()

Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

```python
>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()
```

max_odf(kwargs)**

Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[\max_{u \in S} \frac{|\{(u, v) \in E : v \not\in S\}|}{d(u)} \]

where \(E \) is the graph edge set, \(v \) is a node in \(S \) and \(d(u) \) is the degree of \(u \)

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()
```

modularity_density()

The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures. The idea of this metric is to include the information about algorithms size into the expected density of algorithms to avoid the negligence of small and dense communities. For each algorithms \(C \) in partition \(S \), it uses the average modularity degree calculated by \(d(C) = d_{int}(C) d_{ext}(C) \)
where $d^{\text{int}}(C)$ and $d^{\text{ext}}(C)$ are the average internal and external degrees of C respectively to evaluate the fitness of C in its network. Finally, the modularity density can be calculated as follows:

$$Q(S) = \sum_{C \in S} \frac{1}{n_C} \left(\sum_{i \in C} k^{\text{int}}_{i \mid C} - \sum_{i \in C} k^{\text{out}}_{i \mid C} \right)$$

where n_C is the number of nodes in C, $k^{\text{int}}_{i \mid C}$ is the degree of node i within C and $k^{\text{out}}_{i \mid C}$ is the degree of node i outside C.

Returns the modularity density score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()
```

References

newman_girvan_modularity()

Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph under consideration. In other words, the modularity compares the real network structure with a corresponding one where nodes are connected without any preference about their neighbors.

$$Q(S) = \frac{1}{m} \sum_{c \in S} \left(m_S - \frac{(2m_S + l_S)^2}{4m} \right)$$

where m is the number of graph edges, m_S is the number of algorithms edges, l_S is the number of edges from nodes in S to nodes outside S.

Returns the Newman-Girvan modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()
```

References

nf1(clustering)

Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example
Reference

normalized_cut(kwargs)**

Normalized variant of the Cut-Ratio:

\[f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(mm_S) + c_S} \]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms internal edges and \(c_S \) is the number of algorithms nodes.

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()
```

normalized_mutual_information(clustering)

Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by \(\sqrt{H(labels_{true}) * H(labels_{pred})} \)

Parameters

- **clustering** – NodeClustering object

Returns
normalized mutual information score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)
```

omega(clustering)

Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters

- **clustering** – NodeClustering object

Returns
omega index
Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)
```

Reference

overlapping_normalized_mutual_information_LFK(clustering)

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichinetti et al.

Parameters
- **clustering** – NodeClustering object

Returns onmi score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_communities)
```

Reference

overlapping_normalized_mutual_information_MGH(clustering, normalization='max')

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details.

Parameters
- **clustering** – NodeClustering object
- **normalization** – one of “max” or “LFK”. Default “max” (corresponds to the main method described in the article)

Returns onmi score

Example
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities, leiden_communities)

References

purity()

Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities.

:return: FitnessResult object

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()

significance()

Significance estimates how likely a partition of dense communities appear in a random graph.

:Returns: the significance score

Example

References

size(**kwargs)

Size is the number of nodes in the community

:Parameters: summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

:Returns: a FitnessResult object/a list of community-wise score

Example:

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()

surprise()

Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random realization, the better the quality of the algorithms structure.

:Returns: the surprise score

Example
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()

References

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>

triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

\[
 f(S) = \frac{|\{u : u \in S, \{(v, w) : v, w \in S, (u, v) \in E, (u, w) \in E, (v, w) \in E\} \neq \emptyset\}|}{n_S}
\]

where \(n_S\) is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information(clustering)
Variation of Information among two nodes partitions.

\[H(p) + H(q) - 2MI(p, q) \]

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

z_modularity()

Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept of this version is based on an observation that the difference between the fraction of edges inside communities and the expected number of such edges in a null model should not be considered as the only contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()
```

References

Methods

Evaluating Node Clustering

AttrNodeClustering.purity() Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities.

Biparite Node Clustering

Overview

```python
class BiNodeClustering(left_communities, right_communities, graph, method_name,
method_parameters=None, overlap=False)
```

Bipartite Node Communities representation.

Parameters

- *left_communities* – list of left communities
- *right_communities* – list of right communities
- *graph* – a networkx/igraph object
- *method_name* – community discovery algorithm name
- *method_parameters* – configuration for the community discovery algorithm used
- *overlap* – boolean, whether the partition is overlapping or not

adjusted_mutual_information

Adjusted Mutual Information between two clusterings.
Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings U and V, the AMI is given as:

$$AMI(U, V) = \frac{MI(U, V) - E(MI(U, V))}{\max(H(U), H(V)) - E(MI(U, V))}$$

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index.

Parameters

- **clustering** – NodeClustering object

Returns

AMI score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)
```

Reference

adjusted_rand_index *(clustering)*

Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

$$ARI = \frac{(RI - Expected_{RI})}{(max(RI) - Expected_{RI})}$$

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

$$adjusted_rand_index(a, b) == adjusted_rand_index(b, a)$$

Parameters

- **clustering** – NodeClustering object

Returns

ARI score

Example
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)

Reference

average_internal_degree (**kwargs)
The average internal degree of the algorithms set.

\[f(S) = \frac{2m_S}{n_S} \]

where \(m_S \) is the number of algorithms internal edges and \(n_S \) is the number of algorithms nodes.

Parameters
- summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
- a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()
```

avg_odf (**kwargs)
Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[
\frac{1}{n_S} \sum_{u \in S} \frac{|\{(u, v) \in E : v \notin S\}|}{d(u)}
\]

where \(E \) is the graph edge set, \(v \) is a node in \(S \), \(d(u) \) is the degree of \(u \) and \(n_S \) is the set of algorithms nodes.

Parameters
- summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns
- a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = eva(g, alpha=alpha)
>>> pur = communities.purity()
```

conductance (**kwargs)
Fraction of total edge volume that points outside the algorithms.

\[
f(S) = \frac{c_S}{2m_S + c_S}
\]

where \(c_S \) is the number of algorithms nodes and, \(m_S \) is the number of algorithms edges.
Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()
```

cut_ratio(**kwargs)

Fraction of existing edges (out of all possible edges) leaving the algorithms.

.. math:: f(S) = \frac{c_S}{n_S (n n_S)}

where \(c_S\) is the number of algorithms nodes and, \(n_S\) is the number of edges on the algorithms boundary

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()
```

edges_inside(**kwargs)

Number of edges internal to the algorithms.

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()
```

erdos_renyi_modularity()

Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are connected randomly with a constant probability \(p\).

.. math:: Q(S) = \frac{1}{m} \sum_{c \in S} \left(m_{c_S} \frac{m_{n_S} (n_{1_S})}{n (n_1)} \right)

where \(m\) is the number of graph edges, \(m_S\) is the number of algorithms edges, \(l_S\) is the number of edges from nodes in \(S\) to nodes outside \(S\).

Returns the Erdos-Renyi modularity score

Example
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

expansion (**kwargs)
Number of edges per algorithms node that point outside the cluster.

\[f(S) = \frac{c_S}{n_S} \]

where \(n_S \) is the number of edges on the algorithms boundary, \(c_S \) is the number of algorithms nodes.

Parameters

- summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()
```

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters

- clustering – NodeClustering object

Returns

F1 score (harmonic mean of precision and recall)

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)
```

Reference

flake_odf (**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

\[f(S) = \frac{\left| \{u : u \in S, (u, v) \in E : v \in S \} \right| < d(u)/2}{n_S} \]

where \(E \) is the graph edge set, \(v \) is a node in \(S \), \(d(u) \) is the degree of \(u \) and \(n_S \) is the set of algorithms nodes.
Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

`fraction_over_median_degree(**kwargs)`
Fraction of algorithms nodes of having internal degree higher than the median degree value.

\[
f(S) = \frac{|\{u : u \in S, |\{(u, v) : v \in S\}| > d_m\}|}{n_S}
\]

where \(d_m\) is the internal degree median value

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()
```

`get_description(parameters_to_display=None, precision=3)`
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• `parameters_to_display` – parameters to display. By default, all float parameters.

• `precision` – precision used to plot parameters. default: 3

Returns a string description of the method.

`internal_edge_density(**kwargs)`
The internal density of the algorithms set.

\[
f(S) = \frac{m_S}{n_S(n_S-1)/2}
\]

where \(m_S\) is the number of algorithms internal edges and \(n_S\) is the number of algorithms nodes.

Parameters `summary` – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()
```
link_modularity()

Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

```python
>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()
```

max_odf(kwargs**)**

Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

\[
\max_{u \in S} \frac{|\{(u, v) \in E : v \not\in S\}|}{d(u)}
\]

where \(E\) is the graph edge set, \(v\) is a node in \(S\) and \(d(u)\) is the degree of \(u\).

Parameters

- **summary** – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()
```

modularity_density()

The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures. The idea of this metric is to include the information about algorithms size into the expected density of algorithms to avoid the negligence of small and dense communities. For each algorithms \(C\) in partition \(S\), it uses the average modularity degree calculated by \(d(C) = d_{int}(C) d_{ext}(C)\) where \(d_{int}(C)\) and \(d_{ext}(C)\) are the average internal and external degrees of \(C\) respectively to evaluate the fitness of \(C\) in its network. Finally, the modularity density can be calculated as follows:

\[
Q(S) = \sum_{C \in S} \frac{1}{n_C} \left(\sum_{i \in C} k_{i,C}^{int} - \sum_{i \in C} k_{i,C}^{out} \right)
\]

where \(n_C\) is the number of nodes in \(C\), \(k_{i,C}^{int}\) is the degree of node \(i\) within \(C\) and \(k_{i,C}^{out}\) is the degree of node \(i\) outside \(C\).

Returns the modularity density score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()
```

References

newman_girvan_modularity()

Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph under consideration. In other words, the modularity compares the real network structure with a corresponding one where nodes are connected without any preference about their neighbors.

\[Q(S) = \frac{1}{m} \sum_{c \in S} (m_S - \frac{(2m_S + l_S)^2}{4m}) \]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms edges, \(l_S \) is the number of edges from nodes in \(S \) to nodes outside \(S \).

Returns the Newman-Girvan modularity score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()
```

References

nf1 (clustering)

Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)
```

Reference

normalized_cut(**kwargs)

Normalized variant of the Cut-Ratio

\[: f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(mm_S) + c_S} \]

where \(m \) is the number of graph edges, \(m_S \) is the number of algorithms internal edges and \(c_S \) is the number of algorithms nodes.
Parameters summary – (optional, default True) if True, an overall summary is returned for the partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()
```

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by \(\sqrt{H(labels_true) \times H(labels_pred)} \)

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)
```

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)
```

Reference

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichini et al.

Parameters clustering – NodeClustering object
Returns onmi score

Example

```python
>>> from cdlib import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_MGH(leiden_communities)
```

Reference

`overlapping_normalized_mutual_information_MGH(clustering, normalization='max')`

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details.

Parameters

- `clustering` – NodeClustering object
- `normalization` – one of “max” or “LFK”. Default “max” (corresponds to the main method described in the article)

Returns onmi score

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities, leiden_communities)
```

References

`significance()`

Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

```python
>>> from cdlib import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()
```
size(**kwargs)

Size is the number of nodes in the community

Parameters

summary – (optional, default True) if **True**, an overall summary is returned for the partition (min, max, avg, std); if **False** a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example:

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()
```

surprise()

Surprise is a statistical approach that proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random realization, the better the quality of the algorithms structure.

Returns

the surprise score

Example

```python
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()
```

References

to_json()

Generate a JSON representation of the algorithms object

Returns

a JSON formatted string representing the object

```
to_node_community_map()
```

Generate a \(\langle \text{node, list(communities)} \rangle \) representation of the current clustering

Returns

dict of the form \(\langle \text{node, list(communities)} \rangle \)

triangle_participation_ratio(**kwargs)

Fraction of algorithms nodes that belong to a triad.

\[
f(S) = \frac{|\{u : u \in S, \{(v, w) : v, w \in S, (u, v) \in E, (u, w) \in E, (v, w) \in E \} \neq \emptyset\}|}{n_S}
\]

where \(n_S \) is the set of algorithms nodes.

Parameters

summary – (optional, default True) if **True**, an overall summary is returned for the partition (min, max, avg, std); if **False** a list of community-wise score

Returns

a FitnessResult object/a list of community-wise score

Example
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information (clustering)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

z_modularity ()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept of this version is based on an observation that the difference between the fraction of edges inside communities and the expected number of such edges in a null model should not be considered as the only contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()

References

Edge Clustering

Overview

class EdgeClustering (communities, graph, method_name, method_parameters=None, overlap=False)

Edge Clustering representation.
Parameters

- **communities** – list of communities
- **graph** – a networkx/igraph object
- **method_name** – community discovery algorithm name
- **method_parameters** – configuration for the community discovery algorithm used
- **overlap** – boolean, whether the partition is overlapping or not

get_description *(parameters_to_display=None, precision=3)*

Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

- **parameters_to_display** – parameters to display. By default, all float parameters.
- **precision** – precision used to plot parameters. default: 3

Returns a string description of the method.

to_edge_community_map()

Generate a <edge, list(communities)> representation of the current clustering

Returns dict of the form <edge, list(communities)>

to_json()

Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

Methods

Data transformation and IO

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EdgeClustering.to_json()</td>
<td>Generate a JSON representation of the algorithms object</td>
</tr>
<tr>
<td>EdgeClustering.to_edge_community_map()</td>
<td>Generate a <edge, list(communities)> representation of the current clustering</td>
</tr>
</tbody>
</table>

1.5.2 Community Discovery algorithms

CDlib collects implementations of several Community Discovery algorithms.

To maintain the library organization as clean and resilient as possible the approaches are grouped following a simple, two level, rationale:

1. The first distinction is made on the object clustered, thus separating **Node Clustering** and **Edge Clustering** algorithms;
2. The second distinction is made on the specific kind of partition each one of them generates: **Crisp**, **Overlapping** or **Fuzzy**.

This documentation follows the same rationale.

Node Clustering

Algorithms falling in this category generate communities composed by nodes. The communities can represent neat, *crisp*, partition as well as *overlapping* or even *fuzzy* ones.
Note: The following lists are aligned to CD methods available in the *GitHub main branch* of CDlib.

In particular, the current version of the library on pypl (that can be installed through pip) does not include the following algorithms: belief, ga.

Crisp Communities

A clustering is said to be a *partition* if each node belongs to one and only one community. Methods in this subclass return as result a `NodeClustering` object instance.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>agdl(g_original, number_communities, kc)</code></td>
<td>AGDL is a graph-based agglomerative algorithm, for clustering high-dimensional data.</td>
</tr>
<tr>
<td><code>aslpaw(g_original)</code></td>
<td>ASLPaw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks.</td>
</tr>
<tr>
<td><code>async_fluid(g_original, k)</code></td>
<td>Fluid Communities (FluidC) is based on the simple idea of fluids (i.e., communities) interacting in an environment (i.e., a non-complete graph), expanding and contracting.</td>
</tr>
<tr>
<td><code>belief(g_original[, max_it, eps, ...])</code></td>
<td>Belief community seeks the consensus of many high-modularity partitions.</td>
</tr>
<tr>
<td><code>cpm(g_original[, initial_membership, ...])</code></td>
<td>CPM is a model where the quality function to optimize is:</td>
</tr>
<tr>
<td><code>chinesewhispers(g_original[, weighting, ...])</code></td>
<td>Fuzzy graph clustering that (i) creates an intermediate representation of the input graph, which reflects the “ambiguity” of its nodes, and (ii) uses hard clustering to discover crisp clusters in such “disambiguated” intermediate graph.</td>
</tr>
<tr>
<td><code>der(g_original[, walk_len, threshold, ...])</code></td>
<td>DER is a Diffusion Entropy Reducer graph clustering algorithm.</td>
</tr>
<tr>
<td><code>edmot(g_original[, component_count, cutoff])</code></td>
<td>The algorithm first creates the graph of higher order motifs.</td>
</tr>
<tr>
<td><code>eigenvector(g_original)</code></td>
<td>Newman’s leading eigenvector method for detecting community structure based on modularity.</td>
</tr>
<tr>
<td><code>em(g_original, k)</code></td>
<td>EM is based on a mixture model.</td>
</tr>
<tr>
<td><code>ga(g_original[, population, generation, r])</code></td>
<td>Genetic based approach to discover communities in social networks.</td>
</tr>
<tr>
<td><code>gdmp2(g_original[, min_threshold])</code></td>
<td>Gdmp2 is a method for identifying a set of dense subgraphs of a given sparse graph.</td>
</tr>
<tr>
<td><code>girvan_newman(g_original, level)</code></td>
<td>The Girvan–Newman algorithm detects communities by progressively removing edges from the original graph.</td>
</tr>
<tr>
<td><code>greedy_modularity(g_original[, weight])</code></td>
<td>The CNM algorithm uses the modularity to find the communities structures.</td>
</tr>
<tr>
<td><code>infomap(g_original)</code></td>
<td>Infomap is based on ideas of information theory.</td>
</tr>
<tr>
<td><code>label_propagation(g_original)</code></td>
<td>The Label Propagation algorithm (LPA) detects communities using network structure alone.</td>
</tr>
<tr>
<td><code>leiden(g_original[, initial_membership, weights])</code></td>
<td>The Leiden algorithm is an improvement of the Louvain algorithm.</td>
</tr>
<tr>
<td><code>louvain(g_original[, weight, resolution, ...])</code></td>
<td>Louvain maximizes a modularity score for each community.</td>
</tr>
</tbody>
</table>
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>markov_clustering(g_original[, expansion, ...])</code></td>
<td>The Markov clustering algorithm (MCL) is based on simulation of (stochastic) flow in graphs.</td>
</tr>
<tr>
<td><code>rber_pots(g_original[, initial_membership, ...])</code></td>
<td>rber_pots is a model where the quality function to optimize is:</td>
</tr>
<tr>
<td><code>rb_pots(g_original[, initial_membership, ...])</code></td>
<td>Rb_pots is a model where the quality function to optimize is:</td>
</tr>
<tr>
<td><code>scar(g_original, epsilon, mu)</code></td>
<td>SCAN (Structural Clustering Algorithm for Networks) is an algorithm which detects clusters, hubs and outliers in networks.</td>
</tr>
<tr>
<td><code>significance_communities(g_original[, ...])</code></td>
<td>Significance_communities is a model where the quality function to optimize is:</td>
</tr>
<tr>
<td><code>spinglass(g_original)</code></td>
<td>Spinglass relies on an analogy between a very popular statistical mechanic model called Potts spin glass, and the community structure.</td>
</tr>
<tr>
<td><code>surprise_communities(g_original[, ...])</code></td>
<td>Surprise_communities is a model where the quality function to optimize is:</td>
</tr>
<tr>
<td><code>walktrap(g_original)</code></td>
<td>walktrap is an approach based on random walks.</td>
</tr>
<tr>
<td><code>sbm_dl(g_original[, B_min, B_max, deg_corr])</code></td>
<td>Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models.</td>
</tr>
<tr>
<td><code>sbm_dl_nested(g_original[, B_min, B_max, ...])</code></td>
<td>Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models.</td>
</tr>
</tbody>
</table>

cdlib.algorithms.agdl

agdl *(g_original, number_communities, kc)*

AGDL is a graph-based agglomerative algorithm, for clustering high-dimensional data. The algorithm uses the indegree and outdegree to characterize the affinity between two clusters.

Parameters

- `g_original` – a networkx/igraph object
- `number_communities` – number of communities
- `kc` – size of the neighbor set for each cluster

Returns

NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.agdl(g, number_communities=3, kc=4)
```

References

Note: Reference implementation: https://github.com/myungjoon/GDL
cdlib.algorithms.aslpaw

aslpaw(g_original)

ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks. ASLPAw is adaptive with virtually no configuration parameters.

Parameters

- **g_original** – a networkx/igraph object

Returns

NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.aslpaw(G)
```

References

Note: Reference implementation: https://github.com/fsssosei/ASLPAw

cdlib.algorithms.async_fluid

async_fluid(g_original, k)

Fluid Communities (FluidC) is based on the simple idea of fluids (i.e., communities) interacting in an environment (i.e., a non-complete graph), expanding and contracting. It is propagation-based algorithm and it allows to specify the number of desired communities (k) and it is asynchronous, where each vertex update is computed using the latest partial state of the graph.

Parameters

- **g_original** – a networkx/igraph object
- **k** – Number of communities to search

Returns

EdgeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.async_fluid(G, k=2)
```

References

Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesús Labarta, Ulises Cortés, Toyotaro Suzumura T. Fluid Communities: A Competitive and Highly Scalable Community Detection Algorithm.
cdlib.algorithms.belief

`belief(g_original, max_it=100, eps=0.0001, reruns_if_not_conv=5, threshold=0.005, q_max=7)`

Belief community seeks the consensus of many high-modularity partitions. It does this with a scalable message-passing algorithm, derived by treating the modularity as a Hamiltonian and applying the cavity method.

Parameters
- `g_original` – a networkx/igraph object
- `max_it` –
- `eps` –
- `reruns_if_not_conv` –
- `threshold` –
- `q_max` –

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.belief(G)
```

References

Note: Reference implementation: https://github.com/weberfm/belief_propagation_community_detection

cdlib.algorithms.cpm

`cpm(g_original, initial_membership=None, weights=None, node_sizes=None, resolution_parameter=1)`

CPM is a model where the quality function to optimize is:

\[Q = \sum_{ij} (A_{ij} - \gamma) \delta(\sigma_i, \sigma_j) \]

where \(A \) is the adjacency matrix, \(\sigma_i \) denotes the community of node \(i \), \(\delta(\sigma_i, \sigma_j) = 1 \) if \(\sigma_i = \sigma_j \) and 0 otherwise, and, finally \(\gamma \) is a resolution parameter.

The internal density of communities

\[p_c = \frac{m_c}{\binom{n_c}{2}} \geq \gamma \]

is higher than \(\gamma \), while the external density

\[p_{cd} = \frac{m_{cd}}{m_c m_d} \leq \gamma \]

is lower than \(\gamma \). In other words, choosing a particular \(\gamma \) corresponds to choosing to find communities of a particular density, and as such defines communities. Finally, the definition of a community is in a sense independent of the actual graph, which is not the case for any of the other methods.

1.5. Reference
Parameters

- **g_original** – a networkx/igraph object
- **initial_membership** – list of int Initial membership for the partition. If None then defaults to a singleton partition. Default None
- **weights** – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Default None
- **node_sizes** – list of int, or vertex attribute Sizes of nodes are necessary to know the size of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific cases this could be changed. Default None
- **resolution_parameter** – double >0 A parameter value controlling the coarseness of the clustering. Higher resolutions lead to more communities, while lower resolutions lead to fewer communities. Default 1

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.cpm(G)
```

References

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.chinesewhispers

chinesewhispers \((g_{\text{original}}, \text{weighting} = \text{top}, \text{iterations}=20, \text{seed}={\text{None}})\)

Fuzzy graph clustering that (i) creates an intermediate representation of the input graph, which reflects the “ambiguity” of its nodes, and (ii) uses hard clustering to discover crisp clusters in such “disambiguated” intermediate graph.

Parameters

- **g_original** –
- **weighting** – edge weighing schemas. Available modalities: ['top', 'lin', 'log']
- **iterations** – number of iterations
- **seed** – random seed

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.chinesewhispers(G)
```
References

Note: Reference implementation: https://github.com/nlpub/chinese-whispers-python

cdlib.algorithms.der

der \((g_{\text{original}}, \text{walk_len}=3, \text{threshold}=1e-05, \text{iter_bound}=50)\)

DER is a Diffusion Entropy Reducer graph clustering algorithm. The algorithm uses random walks to embed the graph in a space of measures, after which a modification of k-means in that space is applied. It creates the walks, creates an initialization, runs the algorithm, and finally extracts the communities.

Parameters

- \(g_{\text{original}}\) – an undirected networkx graph object
- \(\text{walk_len}\) – length of the random walk, default 3
- \(\text{threshold}\) – threshold for stop criteria; if the likelihood_diff is less than threshold the algorithm stops, default 0.00001
- \(\text{iter_bound}\) – maximum number of iteration, default 50

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()  
>>> coms = algorithms.der(G, 3, .00001, 50)
```
Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()
>>> coms = algorithms.edmot(G, max_loop=1000)
```

References

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.eigenvector

eigenvector (g_original)

Newman’s leading eigenvector method for detecting community structure based on modularity. This is the proper internal of the recursive, divisive algorithm: each split is done by maximizing the modularity regarding the original network.

Parameters:
- `g_original` – a networkx/igraph object

Returns: NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()
>>> com = algorithms.eigenvector(G)
```

References

cdlib.algorithms.em

e (g_original, k)

EM is based on based on a mixture model. The algorithm uses the expectation–maximization algorithm to detect structure in networks.

Parameters:
- `g_original` – a networkx/igraph object
- `k` – the number of desired communities

Returns: NodeClustering object

Example
```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()
>>> com = algorithms.em(G, k=3)
```

References

cdlib.algorithms.ga

ga (g_original, population=300, generation=30, r=1.5)

Genetic based approach to discover communities in social networks. GA optimizes a simple but efficacious fitness function able to identify densely connected groups of nodes with sparse connections between groups.

Parameters

- `g_original` – a networkx/igraph object
- `population` –
- `generation` –
- `r` –

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()

>>> coms = algorithms.ga(G)
```

References

Note: Reference implementation: https://github.com/hariswb/ga-community-detection

cdlib.algorithms.gdmp2

gdmp2 (g_original, min_threshold=0.75)

Gdmp2 is a method for identifying a set of dense subgraphs of a given sparse graph. It is inspired by an effective technique designed for a similar problem—matrix blocking, from a different discipline (solving linear systems).

Parameters

- `g_original` – a networkx/igraph object
- `min_threshold` – the minimum density threshold parameter to control the density of the output subgraphs, default 0.75

Returns NodeClustering object

1.5. Reference
Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()
>>> com = algorithms.gdmp2(G)
```

References

Chen, Jie, and Yousef Saad. Dense subgraph extraction with application to community detection. IEEE Transactions on Knowledge and Data Engineering 24.7 (2012): 1216-1230.

Note: Reference implementation: https://github.com/imabhishekl/CSC591_Community_Detection

cdlib.algorithms.girvan_newman

girvan_newman (g_original, level)
The Girvan–Newman algorithm detects communities by progressively removing edges from the original graph. The algorithm removes the “most valuable” edge, traditionally the edge with the highest betweenness centrality, at each step. As the graph breaks down into pieces, the tightly knit community structure is exposed and the result can be depicted as a dendrogram.

Parameters

- g_original – a networkx/igraph object
- level – the level where to cut the dendrogram

Returns

NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

>>> G = nx.karate_club_graph()
>>> com = algorithms.girvan_newman(G, level=3)
```

References

cdlib.algorithms.greedy_modularity

greedy_modularity (g_original, weight=None)
The CNM algorithm uses the modularity to find the communities structures. At every step of the algorithm two communities that contribute maximum positive value to global modularity are merged.

Parameters

- g_original – a networkx/igraph object
- weight – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Default None
Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.greedy_modularity(G)
```

References

cdlib.algorithms.infomap

`infomap(g_original)`

Infomap is based on ideas of information theory. The algorithm uses the probability flow of random walks on a network as a proxy for information flows in the real system and it decomposes the network into modules by compressing a description of the probability flow.

Parameters

- `g_original` – a networkx/igraph object

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.infomap(G)
```

References

Note: Reference implementation: https://pypi.org/project/infomap/

cdlib.algorithms.label_propagation

`label_propagation(g_original)`

The Label Propagation algorithm (LPA) detects communities using network structure alone. The algorithm doesn’t require a pre-defined objective function or prior information about the communities. It works as follows:

- Every node is initialized with a unique label (an identifier) -These labels propagate through the network - At every iteration of propagation, each node updates its label to the one that the maximum numbers of its neighbours belongs to. Ties are broken uniformly and randomly. -LPA reaches convergence when each node has the majority label of its neighbours.

Parameters

- `g_original` – a networkx/igraph object

Returns EdgeClustering object

Example

```python
```
from cdlib import algorithms
import networkx as nx
G = nx.karate_club_graph()
coms = algorithms.label_propagation(G)

References

cdlib.algorithms.leiden

leiden (g_original, initial_membership=None, weights=None)
The Leiden algorithm is an improvement of the Louvain algorithm. The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the partition (3) aggregation of the network based on the refined partition, using the non-refined partition to create an initial partition for the aggregate network.

Parameters

• g_original – a networkx/igraph object
• initial_membership – list of int Initial membership for the partition. If None then defaults to a singleton partition. Default None
• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Default None

Returns NodeClustering object

Example

from cdlib import algorithms
import networkx as nx
G = nx.karate_club_graph()
coms = algorithms.leiden(G)

References

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.louvain

louvain (g_original, weight='weight', resolution=1.0, randomize=False)
Louvain maximizes a modularity score for each community. The algorithm optimises the modularity in two elementary phases: (1) local moving of nodes; (2) aggregation of the network. In the local moving phase, individual nodes are moved to the community that yields the largest increase in the quality function. In the aggregation phase, an aggregate network is created based on the partition obtained in the local moving phase. Each community in this partition becomes a node in the aggregate network. The two phases are repeated until the quality function cannot be increased further.
Parameters

- **g_original** – a networkx/igraph object
- **weight** – str, optional the key in graph to use as weight. Default to 'weight'
- **resolution** – double, optional. Will change the size of the communities, default to 1.
- **randomize** – boolean, optional. Will randomize the node evaluation order and the community evaluation order to get different partitions at each call, default False

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
coms = algorithms.louvain(G, weight='weight', resolution=1., randomize=False)
```

References

Note: Reference implementation: https://github.com/taynaud/python-louvain

cdlib.algorithms.markov_clustering

markov_clustering

(g_original, expansion=2, inflation=2, loop_value=1, iterations=100, pruning_threshold=0.001, pruning_frequency=1, convergence_check_frequency=1)

The Markov clustering algorithm (MCL) is based on simulation of (stochastic) flow in graphs. The MCL algorithm finds cluster structure in graphs by a mathematical bootstrapping procedure. The process deterministically computes (the probabilities of) random walks through the graph, and uses two operators transforming one set of probabilities into another. It does so using the language of stochastic matrices (also called Markov matrices) which capture the mathematical concept of random walks on a graph. The MCL algorithm simulates random walks within a graph by alternation of two operators called expansion and inflation.

Parameters

- **g_original** – a networkx/igraph object
- **expansion** – The cluster expansion factor
- **inflation** – The cluster inflation factor
- **loop_value** – Initialization value for self-loops
- **iterations** – Maximum number of iterations (actual number of iterations will be less if convergence is reached)
- **pruning_threshold** – Threshold below which matrix elements will be set set to 0
- **pruning_frequency** – Perform pruning every ‘pruning_frequency’ iterations.
- **convergence_check_frequency** – Perform the check for convergence every convergence_check_frequency iterations

Returns NodeClustering object
Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
coms = algorithms.markov_clustering(G)
```

References

Note: Reference implementation: https://github.com/GuyAllard/markov_clustering

cdlib.algorithms.rber_pots

rber_pots

```python
g_original, initial_membership=None, weights=None, node_sizes=None, resolution_parameter=1)
```

rber_pots is a model where the quality function to optimize is:

\[
Q = \sum_{ij} (A_{ij} - \gamma p) \delta(\sigma_i, \sigma_j)
\]

where \(A\) is the adjacency matrix, \(p = \frac{m}{\binom{n}{2}}\) is the overall density of the graph, \(\sigma_i\) denotes the community of node \(i\), \(\delta(\sigma_i, \sigma_j) = 1\) if \(\sigma_i = \sigma_j\) and 0 otherwise, and, finally \(\gamma\) is a resolution parameter.

Parameters

- **g_original** – a networkx/igraph object
- **initial_membership** – list of int Initial membership for the partition. If None then defaults to a singleton partition. Deafult None
- **weights** – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Deafult None
- **node_sizes** – list of int, or vertex attribute Sizes of nodes are necessary to know the size of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific cases this could be changed. Deafult None
- **resolution_parameter** – double >0 A parameter value controlling the coarseness of the clustering. Higher resolutions lead to more communities, while lower resolutions lead to fewer communities. Deafult 1

Returns

NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
coms = algorithms.rber_pots(G)
```

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.rb_pots

rb_pots (g_original, initial_membership=None, weights=None, resolution_parameter=1)

Rb_pots is a model where the quality function to optimize is:

\[Q = \sum_{ij} \left(A_{ij} - \gamma \frac{k_i k_j}{2m} \right) \delta(\sigma_i, \sigma_j) \]

where \(A \) is the adjacency matrix, \(k_i \) is the (weighted) degree of node \(i \), \(m \) is the total number of edges (or total edge weight), \(\sigma_i \) denotes the community of node \(i \) and \(\delta(\sigma_i, \sigma_j) = 1 \) if \(\sigma_i = \sigma_j \) and \(0 \) otherwise. For directed graphs a slightly different formulation is used, as proposed by Leicht and Newman:

\[Q = \sum_{ij} \left(A_{ij} - \gamma \frac{k^\text{out}_i k^\text{in}_j}{m} \right) \delta(\sigma_i, \sigma_j), \]

where \(k^\text{out}_i \) and \(k^\text{in}_i \) refers to respectively the outdegree and indegree of node \(i \), and \(A_{ij} \) refers to an edge from \(i \) to \(j \). Note that this is the same of Leiden algorithm when setting \(\gamma = 1 \) and normalising by \(2m \), or \(m \) for directed graphs.

Parameters

- **g_original** – a networkx/igraph object
- **initial_membership** – list of int Initial membership for the partition. If None then defaults to a singleton partition. Deafault None
- **weights** – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Deafault None
- **resolution_parameter** – double >0 A parameter value controlling the coarseness of the clustering. Higher resolutions lead to more communities, while lower resolutions lead to fewer communities. Default 1

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.rb_pots(G)
```

References

cdlib.algorithms.scan

scan *(g_original, epsilon, mu)*

SCAN (Structural Clustering Algorithm for Networks) is an algorithm which detects clusters, hubs and outliers in networks. It clusters vertices based on a structural similarity measure. The method uses the neighborhood of the vertices as clustering criteria instead of only their direct connections. Vertices are grouped into the clusters by how they share neighbors.

Parameters

- **g_original** – a networkx/igraph object
- **epsilon** – the minimum threshold to assigning cluster membership
- **mu** – minimum number of neighbors with a structural similarity that exceeds the threshold epsilon

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.scan(G, epsilon=0.7, mu=3)
```

References

cdlib.algorithms.significance_communities

significance_communities *(g_original, initial_membership=None, node_sizes=None)*

Significance_communities is a model where the quality function to optimize is:

\[
Q = \sum_c \binom{n_c}{2} D(p_c \parallel p)
\]

where \(n_c\) is the number of nodes in community \(c\), \(p_c = \binom{m_c}{2}\) is the density of community \(c\), \(p = \frac{m}{\binom{2}{2}}\) is the overall density of the graph, and finally \(D(x \parallel y) = x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}\) is the binary Kullback-Leibler divergence. For directed graphs simply multiply the binomials by 2. The expected Significance in Erdos-Renyi graphs behaves roughly as \(\frac{1}{2} n \ln n\) for both directed and undirected graphs in this formulation.

Warning: This method is not suitable for weighted graphs.

Parameters

- **g_original** – a networkx/igraph object
- **initial_membership** – list of int Initial membership for the partition. If None then defaults to a singleton partition. Default None
• **node_sizes** – list of int, or vertex attribute Sizes of nodes are necessary to know the size of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific cases this could be changed. Default: None

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.significance_communities(G)
```

References

Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in community structure. Scientific Reports, 3, 2930. 10.1038/srep02930 [http://doi.org/10.1038/srep02930]

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.spinglass

spinglass *(g_original)*

Spinglass relies on an analogy between a very popular statistical mechanic model called Potts spin glass, and the community structure. It applies the simulated annealing optimization technique on this model to optimize the modularity.

Parameters

- **g_original** – a networkx/igraph object

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.spinglass(G)
```

References

cdlib.algorithms.surprise_communities

surprise_communities *(g_original, initial_membership=None, weights=None, node_sizes=None)*

Surprise_communities is a model where the quality function to optimize is:

\[Q = m D(q \| \langle q \rangle) \]

where \(m \) is the number of edges, \(q = \frac{\sum_m m_e}{m} \), is the fraction of internal edges, \(\langle q \rangle = \frac{\sum_q \binom{n_q}{2}}{\binom{n}{2}} \) is the expected fraction of internal edges, and finally

1.5. Reference
\[D(x \parallel y) = x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y} \] is the binary Kullback-Leibler divergence.

For directed graphs we can multiplying the binomials by 2, and this leaves \(\langle q \rangle \) unchanged, so that we can simply use the same formulation. For weighted graphs we can simply count the total internal weight instead of the total number of edges for \(q \), while \(\langle q \rangle \) remains unchanged.

Parameters

- `g_original` – a networkx/igraph object
- `initial_membership` – list of int Initial membership for the partition. If `None` then defaults to a singleton partition. Deafault `None`
- `weights` – list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Deafault `None`
- `node_sizes` – list of int, or vertex attribute Sizes of nodes are necessary to know the size of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific cases this could be changed. Deafault `None`

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.surprise_communities(G)
```

References

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.walktrap

walktrap (`g_original`)

walktrap is an approach based on random walks. The general idea is that if you perform random walks on the graph, then the walks are more likely to stay within the same community because there are only a few edges that lead outside a given community. Walktrap runs short random walks and uses the results of these random walks to merge separate communities in a bottom-up manner.

Parameters `g_original` – a networkx/igraph object

Returns NodeClusterint object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.walktrap(G)
```

References

`cdlib.algorithms.sbm_dl`

`sbm_dl` *(`g_original`, `B_min=None`, `B_max=None`, `deg_corr=True`, **`kwargs`)*

Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models.

Fit a non-overlapping stochastic block model (SBM) by minimizing its description length using an agglomerative heuristic. If no parameter is given, the number of blocks will be discovered automatically. Bounds for the number of communities can be provided using `B_min`, `B_max`.

Parameters

- `g_original` – network/igraph object
- `B_min` – minimum number of communities that can be found
- `B_max` – maximum number of communities that can be found
- `deg_corr` – if true, use the degree corrected version of the SBM

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = sbm_dl(G)
```

References

`cdlib.algorithms.sbm_dl_nested`

`sbm_dl_nested` *(`g_original`, `B_min=None`, `B_max=None`, `deg_corr=True`, **`kwargs`)*

Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. (nested)

Fit a nested non-overlapping stochastic block model (SBM) by minimizing its description length using an agglomerative heuristic. Return the lowest level found. Currently cdlib do not support hierarchical clustering. If no parameter is given, the number of blocks will be discovered automatically. Bounds for the number of communities can be provided using `B_min`, `B_max`.

Parameters

- `g_original` – igraph/networkx object
- `B_min` – minimum number of communities that can be found
- `B_max` – maximum number of communities that can be found
- `deg_corr` – if true, use the degree corrected version of the SBM

Returns NodeClustering object

Example
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = sbm_dl(G)

References

Overlapping Communities

A clustering is said to be overlapping if any generic node can be assigned to more than one community. Methods in this subclass return as result a NodeClustering object instance.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>angel</td>
<td>Angel is a node-centric bottom-up community discovery algorithm.</td>
</tr>
<tr>
<td>big_clam</td>
<td>BigClam is an overlapping community detection method that scales to large networks.</td>
</tr>
<tr>
<td>conga</td>
<td>CONGA (Cluster-Overlap Newman Girvan Algorithm) is an algorithm for discovering overlapping communities.</td>
</tr>
<tr>
<td>congo</td>
<td>CONGO (CONGA Optimized) is an optimization of the CONGA algorithm.</td>
</tr>
<tr>
<td>danmf</td>
<td>The procedure uses telescopic non-negative matrix factorization in order to learn a cluster membership distribution over nodes.</td>
</tr>
<tr>
<td>demon</td>
<td>Demon is a node-centric bottom-up overlapping community discovery algorithm.</td>
</tr>
<tr>
<td>ego_networks</td>
<td>Ego-networks returns overlapping communities centered at each nodes within a given radius.</td>
</tr>
<tr>
<td>egonet_splitter</td>
<td>The method first creates the egonets of nodes.</td>
</tr>
<tr>
<td>kclique</td>
<td>Find k-clique communities in graph using the percolation method.</td>
</tr>
<tr>
<td>lais2</td>
<td>LAIS2 is an overlapping community discovery algorithm based on the density function.</td>
</tr>
<tr>
<td>lemon</td>
<td>Lemon is a large scale overlapping community detection method based on local expansion via minimum one norm.</td>
</tr>
<tr>
<td>lfm</td>
<td>LFM is based on the local optimization of a fitness function.</td>
</tr>
<tr>
<td>multicom</td>
<td>MULTICOM is an algorithm for detecting multiple local communities, possibly overlapping, by expanding the initial seed set.</td>
</tr>
<tr>
<td>nmnf</td>
<td>The procedure uses joint non-negative matrix factorization with modularity based regularization in order to learn a cluster membership distribution over nodes.</td>
</tr>
</tbody>
</table>
Table 9 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nnned(g_original[, dimensions, iterations, seed])</code></td>
<td>The procedure uses non-negative matrix factorization in order to learn an unnormalized cluster membership distribution over nodes.</td>
</tr>
<tr>
<td><code>node_perception(g_original, threshold, . . .)</code></td>
<td>Node perception is based on the idea of joining together small sets of nodes.</td>
</tr>
<tr>
<td><code>overlapping_seed_set_expansion(g_original, seeds)</code></td>
<td>OSSE is an overlapping community detection algorithm optimizing the conductance community score. The algorithm uses a seed set expansion approach; the key idea is to find good seeds, and then expand these seed sets using the personalized PageRank clustering procedure.</td>
</tr>
<tr>
<td><code>percomvc(g_original)</code></td>
<td>The PercoMVC approach composes of two steps.</td>
</tr>
<tr>
<td><code>slpa(g_original[, t, r])</code></td>
<td>SLPA is an overlapping community discovery that extends the LPA.</td>
</tr>
<tr>
<td><code>wCommunity(g_original[, min_bel_degree, . . .])</code></td>
<td>Algorithm to identify overlapping communities in weighted graphs</td>
</tr>
</tbody>
</table>

cdlib.algorithms.angel

`angel(g_original, threshold, min_community_size=3)`

Angel is a node-centric bottom-up community discovery algorithm. It leverages ego-network structures and overlapping label propagation to identify micro-scale communities that are subsequently merged in mesoscale ones. Angel is the, faster, successor of Demon.

Parameters

- `g_original` – a networkx/igraph object
- `threshold` – merging threshold in [0,1].
- `min_community_size` – minimum community size, default 3.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.angel(G, min_com_size=3, threshold=0.25)
```

References

Note: Reference implementation: https://github.com/GiulioRossetti/ANGEL

cdlib.algorithms.big_clam

`big_clam(g_original, dimensions=8, iterations=50, learning_rate=0.005)`

BigClam is an overlapping community detection method that scales to large networks. The procedure uses gradient ascent to create an embedding which is used for deciding the node-cluster affiliations.

1.5. Reference
Parameters

- `g_original` – a networkx/igraph object
- `dimensions` – Number of embedding dimensions. Default 8.
- `iterations` – Number of training iterations. Default 50.
- `learning_rate` – Gradient ascent learning rate. Default is 0.005.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.big_clam(G)
```

References

cdlib.algorithms.conga

conga (*g_original*, *number_communities*)

CONGA (Cluster-Overlap Newman Girvan Algorithm) is an algorithm for discovering overlapping communities. It extends the Girvan and Newman’s algorithm with a specific method of deciding when and how to split vertices. The algorithm is as follows:

1. Calculate edge betweenness of all edges in network.
2. Calculate vertex betweenness of vertices, from edge betweennesses.
3. Find candidate set of vertices: those whose vertex betweenness is greater than the maximum edge betweenness.
4. If candidate set is non-empty, calculate pair betweennesses of candidate vertices, and then calculate split betweenness of candidate vertices.
5. Remove edge with maximum edge betweenness or split vertex with maximum split betweenness (if greater).
6. Recalculate edge betweenness for all remaining edges in same component(s) as removed edge or split vertex.
7. Repeat from step 2 until no edges remain.

Parameters

- `g_original` – a networkx/igraph object
- `number_communities` – the number of communities desired

Returns NodeClustering object

Example

```python
```
```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.congo(G, number_communities=3)
```

References

Note: Reference implementation: https://github.com/Lab41/Circulo/tree/master/circulo/algorithms

cdlib.algorithms.congo

congo \((g_original, number_communities, height=2)\)

CONGO (CONGA Optimized) is an optimization of the CONGA algorithm. The CONGO algorithm is the same as CONGA but using local betweenness. The complete CONGO algorithm is as follows:

1. Calculate edge betweenness of edges and split betweenness of vertices.
2. Find edge with maximum edge betweenness or vertex with maximum split betweenness, if greater.
3. **Recalculate edge betweenness and split betweenness:**
 - (a) Subtract betweenness of h-region centred on the removed edge or split vertex.
 - (b) Remove the edge or split the vertex.
 - (c) Add betweenness for the same region.
4. Repeat from step 2 until no edges remain.

Parameters

- **g_original** – a networkx/igraph object
- **number_communities** – the number of communities desired
- **height** – The length of the longest shortest paths that CONGO considers, default 2

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.congo(G, number_communities=3, height=2)
```

References

Note: Reference implementation: https://github.com/Lab41/Circulo/tree/master/circulo/algorithms

1.5. Reference
cdlib.algorithms.danmf

danmf (g_original, layers=(32, 8), pre_iterations=100, iterations=100, seed=42, lamb=0.01)
The procedure uses telescopic non-negative matrix factorization in order to learn a cluster membership distribution over nodes. The method can be used in an overlapping and non-overlapping way.

Parameters

- g_original – a networkx/igraph object
- layers – Autoencoder layer sizes in a list of integers. Default [32, 8].
- pre_iterations – Number of pre-training epochs. Default 100.
- iterations – Number of training epochs. Default 100.
- seed – Random seed for weight initializations. Default 42.
- lamb – Regularization parameter. Default 0.01.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.danmf(G)
```

References

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.demon

demon (g_original, epsilon, min_com_size=3)
Demon is a node-centric bottom-up overlapping community discovery algorithm. It leverages ego-network structures and overlapping label propagation to identify micro-scale communities that are subsequently merged in mesoscale ones.

Parameters

- g_original – a networkx/igraph object
- epsilon – merging threshold in [0,1], default 0.25.
- min_com_size – minimum community size, default 3.

Returns NodeClustering object

Example
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.demon(G, min_com_size=3, epsilon=0.25)

References

Note: Reference implementation: https://github.com/GiulioRossetti/DEMON

cdlib.algorithms.ego_networks

ego_networks (g_original, level=1)

Ego-networks returns overlapping communities centered at each nodes within a given radius.

Parameters

- g_original – a networkx/igraph object
- level – extract communities with all neighbors of distance<=level from a node. Default 1

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.ego_networks(G)

cdlib.algorithms.egonet_splitter

egonet_splitter (g_original, resolution=1.0)

The method first creates the egonets of nodes. A persona-graph is created which is clustered by the Louvain method.

Parameters

- g_original – a networkx/igraph object
- resolution – Resolution parameter of Python Louvain. Default 1.0.

Returns NodeClustering object

Example
```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
coms = algorithms.egonet_splitter(G)
```

References

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.kclique

kclique *(g_original, k)*

Find k-clique communities in graph using the percolation method. A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques.

Parameters

- **g_original** – a networkx/igraph object
- **k** – Size of smallest clique

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
com = algorithms.kclique(G, k=3)
```

References

cdlib.algorithms.lais2

lais2 *(g_original)*

LAIS2 is an overlapping community discovery algorithm based on the density function. In the algorithm considers the density of a group is defined as the average density of the communication exchanges between the actors of the group. LAIS2 IS composed of two procedures LA (Link Aggregate Algorithm) and IS2 (Iterative Scan Algorithm).

Parameters **g_original** – a networkx/igraph object

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx

G = nx.karate_club_graph()
com = algorithms.lais2(G)
```
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.lais2(G)

References

Note: Reference implementation: https://github.com/kritishrivastava/CommunityDetection-Project2GDM

cdlib.algorithms.lemon

lemon (g_original, seeds, min_com_size=20, max_com_size=50, expand_step=6, subspace_dim=3, walk_steps=3, biased=False)

Lemon is a large scale overlapping community detection method based on local expansion via minimum one norm.

The algorithm adopts a local expansion method in order to identify the community members from a few exemplary seed members. The algorithm finds the community by seeking a sparse vector in the span of the local spectra such that the seeds are in its support. LEMON can achieve the highest detection accuracy among state-of-the-art proposals. The running time depends on the size of the community rather than that of the entire graph.

Parameters

- **g_original** – a networkx/igraph object
- **seeds** – Node list
- **min_com_size** – the minimum size of a single community in the network, default 20
- **max_com_size** – the maximum size of a single community in the network, default 50
- **expand_step** – the step of seed set increasement during expansion process, default 6
- **subspace_dim** – dimension of the subspace; choosing a large dimension is undesirable because it would increase the computation cost of generating local spectra default 3
- **walk_steps** – the number of step for the random walk, default 3
- **biased** – boolean; set if the random walk starting from seed nodes, default False

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> seeds = ["0", "2", "3""]
>>> coms = algorithms.lemon(G, seeds, min_com_size=2, max_com_size=5)
cdlib.algorithms.lfm

lfm(g_original, alpha)
LFM is based on the local optimization of a fitness function. It finds both overlapping communities and the hierarchical structure.

Parameters
- g_original – a networkx/igraph object
- alpha – parameter to control the size of the communities: Large values of alpha yield very small communities, small values instead deliver large modules. If alpha is small enough, all nodes end up in the same cluster, the network itself. In most cases, for alpha < 0.5 there is only one community, for alpha > 2 one recovers the smallest communities. A natural choice is alpha =1.

Returns NodeClustering object

Example
```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.lfm(G, alpha=0.8)
```

References

cdlib.algorithms.multicom

multicom(g_original, seed_node)
MULTICOM is an algorithm for detecting multiple local communities, possibly overlapping, by expanding the initial seed set. This algorithm uses local scoring metrics to define an embedding of the graph around the seed set. Based on this embedding, it picks new seeds in the neighborhood of the original seed set, and uses these new seeds to recover multiple communities.

Parameters
- g_original – a networkx/igraph object
- seed_node – Id of the seed node around which we want to detect communities.

Returns EdgeClustering object

Example
```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.multicom(G, seed_node=0)
```

References

Note: Reference implementation: https://github.com/ahollocou/multicom

cdlib.algorithms.nnmf

`nnmf(g_original, dimensions=128, clusters=10, lambd=0.2, alpha=0.05, beta=0.05, iterations=200, lower_control=1e-15, eta=5.0)`

The procedure uses joint non-negative matrix factorization with modularity based regularization in order to learn a cluster membership distribution over nodes. The method can be used in an overlapping and non-overlapping way.

Parameters

- `g_original` – a networkx/igraph object
- `dimensions` – Number of dimensions. Default is 128.
- `clusters` – Number of clusters. Default is 10.
- `lambd` – KKT penalty. Default is 0.2
- `alpha` – Clustering penalty. Default is 0.05.
- `beta` – Modularity regularization penalty. Default is 0.05.
- `iterations` – Number of power iterations. Default is 200.
- `lower_control` – Floating point overflow control. Default is 10**-15.
- `eta` – Similarity mixing parameter. Default is 5.0.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.nnmf(G)
```

References

Note: Reference implementation: https://karateclub.readthedocs.io/
cdlib.algorithms.nnsed

nnsed *(g_original, dimensions=32, iterations=10, seed=42)*

The procedure uses non-negative matrix factorization in order to learn an unnormalized cluster membership distribution over nodes. The method can be used in an overlapping and non-overlapping way.

Parameters

- **g_original** – a networkx/igraph object
- **dimensions** – Embedding layer size. Default is 32.
- **iterations** – Number of training epochs. Default 10.
- **seed** – Random seed for weight initializations. Default 42.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.nnsed(G)
```

References

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.node_perception

node_perception *(g_original, threshold, overlap_threshold, min_comm_size=3)*

Node perception is based on the idea of joining together small sets of nodes. The algorithm first identifies sub-communities corresponding to each node’s perception of the network around it. To perform this step, it considers each node individually, and partition that node’s neighbors into communities using some existing community detection method. Next, it creates a new network in which every node corresponds to a sub-community, and two nodes are linked if their associated sub-communities overlap by at least some threshold amount. Finally, the algorithm identifies overlapping communities in this new network, and for every such community, merge together the associated sub-communities to identify communities in the original network.

Parameters

- **g_original** – a networkx/igraph object
- **threshold** – the tolerance required in order to merge communities
- **overlap_threshold** – the overlap tolerance
- **min_comm_size** – minimum community size default 3

Returns NodeClustering object

Example

```python
```


```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.node_perception(G, threshold=0.25, overlap_threshold=0.25)
```

References

cdlib.algorithms.overlapping_seed_set_expansion

`overlapping_seed_set_expansion` *(g_original, seeds, ninf=False, expansion='ppr', stopping='cond', nworkers=1, nruns=13, alpha=0.99, maxexpand=inf, delta=0.2)*

OSSE is an overlapping community detection algorithm optimizing the conductance community score. The algorithm uses a seed set expansion approach; the key idea is to find good seeds, and then expand these seed sets using the personalized PageRank clustering procedure.

Parameters

- `g_original` – a networkx/igraph object
- `seeds` – Node list
- `ninf` – Neighbourhood Inflation parameter (boolean)
- `expansion` – Seed expansion: ppr or vppr
- `stopping` – Stopping criteria: cond
- `nworkers` – Number of Workers: default 1
- `nruns` – Number of runs: default 13
- `alpha` – alpha value for Personalized PageRank expansion: default 0.99
- `maxexpand` – Maximum expansion allowed for approximate ppr: default INF
- `delta` – Minimum distance parameter for near duplicate communities: default 0.2

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.overlapping_seed_set_expansion(G)
```

References

cdlib.algorithms.percomvc

percomvc(g_original)

The PercoMVC approach composes of two steps. In the first step, the algorithm attempts to determine all communities that the clique percolation algorithm may find. In the second step, the algorithm computes the Eigenvector Centrality method on the output of the first step to measure the influence of network nodes and reduce the rate of the unclassified nodes.

Parameters

g_original – a networkx/igraph object

Returns

NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.percomvc(G)
```

References

Note: Reference implementation: https://github.com/sedjokas/PercoMCV-Code-source

cdlib.algorithms.slpa

slpa(g_original, t=21, r=0.1)

SLPA is an overlapping community discovery that extends the LPA. SLPA consists of the following three stages: 1) the initialization 2) the evolution 3) the post-processing.

Parameters

- g_original – a networkx/igraph object
- t – maximum number of iterations, default 20
- r – threshold [0, 1]. It is used in the post-processing stage: if the probability of seeing a particular label during the whole process is less than r, this label is deleted from a node’s memory. Default 0.1

Returns

EdgeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.slpa(G, t=21, r=0.1)
```
References

Note: Reference implementation: https://github.com/kbalasu/SLPA

cdlib.algorithms.wCommunity

wCommunity (*g_original*, *min_bel_degree*=0.7, *threshold_bel_degree*=0.7, *weightName*='weight')

Algorithm to identify overlapping communities in weighted graphs

Parameters

- *g_original* – a networkx/igraph object
- *min_bel_degree* – the tolerance, in terms of belonging degree, required in order to add a node in a community
- *threshold_bel_degree* – the tolerance, in terms of belonging degree, required in order to add a node in a ‘NLU’ community
- *weightName* – name of the edge attribute containing the weights

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> nx.set_edge_attributes(G, values=1, name='weight')
>>> coms = algorithms.wCommunity(G, min_bel_degree=0.6, threshold_bel_degree=0.6)
```

References

Note: Implementation provided by Marco Cardia <cardiamc@gmail.com> and Francesco Sabiu <fsabiu@gmail.com> (Computer Science Dept., University of Pisa, Italy)

Fuzzy Communities

A clustering is said to be fuzzy if each node can belongs (with a different degree of likelihood) to more than one community. Methods in this subclass return as result a FuzzyNodeClustering object instance.

frc_fgsn (*g_original*, *theta*, *eps*, *r*)

Fuzzy-Rough Community Detection on Fuzzy Granular model of Social Network.
cdlib.algorithms.frc_fgsn

frc_fgsn

g_original, theta, eps, r

Fuzzy-Rough Community Detection on Fuzzy Granular model of Social Network. FRC-FGSN assigns nodes to communities specifying the probability of each association. The flattened partition ensure that each node is associated to the community that maximize such association probability. FRC-FGSN may generate orphan nodes (i.e., nodes not assigned to any community).

Parameters

- **g_original** – networkx/igraph object
- **theta** – community density coefficient
- **eps** – coupling coefficient of the community. Ranges in [0, 1], small values ensure that only strongly connected node granules are merged together.
- **r** – radius of the granule (int)

Returns

FuzzyNodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = frc_fgsn(G, theta=1, eps=0.5, r=3)
```

References

Note: Reference implementation: https://github.com/nidhisridhar/Fuzzy-Community-Detection

Node Attribute

Methods in this subclass return as result a AttrNodeClustering object instance.

eva

g_original, labels[, weight, ...]

The Eva algorithm extends the Louvain approach in order to deal with the attributes of the nodes (aka Louvain Extended to Vertex Attributes).

ilouvain

g_original, labels, id

The I-Louvain algorithm extends the Louvain approach in order to deal only with the scalar attributes of the nodes.
The Eva algorithm extends the Louvain approach in order to deal with the attributes of the nodes (aka Louvain Extended to Vertex Attributes). It optimizes - combining them linearly - two quality functions, a structural and a clustering one, namely Newman’s modularity and purity, estimated as the product of the frequencies of the most frequent labels carried by the nodes within the communities. A parameter alpha tunes the importance of the two functions: an high value of alpha favors the clustering criterion instead of the structural one.

Example

```python
>>> from cdlib.algorithms import eva
>>> import networkx as nx
>>> import random

>>> ll = ["A", "B", "C", "D"]

>>> l2 = ["E", "F", "G"]

>>> g_attr = nx.barabasi_albert_graph(100, 5)

>>> labels = dict()

>>> for node in g_attr.nodes():

>>>     labels[node] = {"ll": random.choice(ll), "l2": random.choice(l2)}

>>> communities = eva(g_attr, labels, alpha=0.8)
```

References

Note: Reference implementation: https://github.com/GiulioRossetti/Eva/tree/master/Eva
param labels dictionary specifying for each node (key) a dict (value) specifying the name attribute (key) and its value (value)

param id a dict specifying the node id

return AttrNodeClustering object

Example

```python
>>> from cdlib.algorithms import ilouvain
>>> import networkx as nx
>>> import random

>>> l1 = [0.1, 0.4, 0.5]
>>> l2 = [34, 3, 112]
>>> g_attr = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g_attr.nodes():
...    labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)}
>>> id = dict()
>>> for n in g.nodes():
...    id[n] = n
>>> communities = ilouvain(g_attr, labels, id)
```

References

Bipartite Graph Communities

Methods in this subclass return as result a BiNodeClustering object instance.

<table>
<thead>
<tr>
<th>bimlpa(g_original[, theta, lambd])</th>
<th>BiMLPA is designed to detect the many-to-many correspondence community in bipartite networks using multi-label propagation algorithm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>cdlib.algorithms.bimlpa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>bimlpa(g_original, theta=0.3, lambd=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiMLPA is designed to detect the many-to-many correspondence community in bipartite networks using multi-label propagation algorithm.</td>
</tr>
</tbody>
</table>

Parameters

- **g_original** – a networkx/igraph object
- **theta** – Label weights threshold. Default 0.3.
- **lambd** – The max number of labels. Default 7.

Returns BiNodeClustering object

Example
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.algorithms.bipartite.generators.random_graph(100, 20, 0.1)
>>> coms = algorithms.bimlpa(G)

References

Note: Reference implementation: https://github.com/hbkt/BiMLPA

Antichain Communities

Methods in this subclass are designed to extract communities from Directed Acyclic Graphs (DAG) and return as result a NodeClustering object instance.

`siblinarity_antichain(g_original[,...])` The algorithm extract communities from a DAG that (i) respects its intrinsic order and (ii) are composed of similar nodes.

cdlib.algorithms.siblinarity_antichain

`siblinarity_antichain(g_original, forwards_backwards_on=True, backwards_forwards_on=False, Lambda=1, with_replacement=False, space_label=None, time_label=None)` The algorithm extract communities from a DAG that (i) respects its intrinsic order and (ii) are composed of similar nodes. The approach takes inspiration from classic similarity measures of bibliometrics, used to assess how similar two publications are, based on their relative citation patterns.

Parameters

- `g_original` – a networkx/igraph object representing a DAG (directed acyclic graph)
- `forwards_backwards_on` – checks successors’ similarity. Boolean, default True
- `backwards_forwards_on` – checks predecessors’ similarity. Boolean, default True
- `Lambda` – desired resolution of the partition. Default 1
- `with_replacement` – If True he similarity of a node to itself is equal to the number of its neighbours based on which the similarity is defined. Boolean, default True.

Returns NodeClustering object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.siblinarity_antichain(G, Lambda=1)
```

References
Edge Clustering

Algorithms falling in this category generates communities composed by edges. They return as result a `EdgeClustering` object instance.

Note: The following lists are aligned to CD methods available in the *GitHub main branch* of CDlib.

| `hierarchical_link_community(g_original)` | HLC (hierarchical link clustering) is a method to classify links into topologically related groups. |

`cdlib.algorithms.hierarchical_link_community`

`hierarchical_link_community(g_original)`

HLC (hierarchical link clustering) is a method to classify links into topologically related groups. The algorithm uses a similarity between links to build a dendrogram where each leaf is a link from the original network and branches represent link communities. At each level of the link dendrogram is calculated the partition density function, based on link density inside communities, to pick the best level to cut.

Parameters `g_original` – a networkx/igraph object
Returns `EdgeClustering` object

Example

```python
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.hierarchical_link_community(G)
```

References

1.5.3 Ensemble Methods

Methods to automate the execution of multiple instances of community detection algorithm(s).

Configuration Objects

Ranges can be specified to automate the execution of a same method while varying (part of) its inputs. `Parameter` allows to specify ranges for numeric parameters, while `BoolParameter` for boolean ones.
Parameter *(name, start, end, step)*

BoolParameter *(name, value)*

cdlib.ensemble.Parameter

class `Parameter` *(name, start, end, step)*

```python
__init__()

    Initialize self. See help(type(self)) for accurate signature.
```

Methods

- `count`
 - Return number of occurrences of value.

- `index`
 - Return first index of value.

Attributes

- `end` (Alias for field number 2)
- `name` (Alias for field number 0)
- `start` (Alias for field number 1)
- `step` (Alias for field number 3)

cdlib.ensemble.BoolParameter

class `BoolParameter` *(name, value)*

```python
__init__()

    Initialize self. See help(type(self)) for accurate signature.
```

Methods

- `count`
 - Return number of occurrences of value.

- `index`
 - Return first index of value.

Attributes

- `name` (Alias for field number 0)
- `value` (Alias for field number 1)

Multiple Instantiation

Two scenarios often arise when applying community discovery algorithms to a graph: 1. the need to compare the results obtained by a give algorithm while varying its parameters 2. the need to compare the multiple algorithms
cdlib allows to do so by leveraging, respectively, `grid_execution` and `pool`.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>grid_execution</code></td>
<td>Instantiate the specified community discovery method performing a grid search on the parameter set.</td>
</tr>
<tr>
<td><code>pool</code></td>
<td>Execute on a pool of community discovery internal on the input graph.</td>
</tr>
</tbody>
</table>

cdlib.ensemble.grid_execution

grid_execution (graph, method, parameters)

Instantiates the specified community discovery method performing a grid search on the parameter set.

Parameters

- method – community discovery method (from nclib.community)
- graph – networkx/igraph object
- parameters – list of Parameter and BoolParameter objects

Returns

At each call the generator yields a tuple composed by the current configuration and the obtained communities.

Example

```python
>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> for communities in ensemble.grid_execution(graph=g, method=algorithms.louvain, parameters=[resolution]):
...     print(communities)
```

cdlib.ensemble.pool

pool (graph, methods, configurations)

Execute on a pool of community discovery internal on the input graph.

Parameters

- methods – list community discovery methods (from nclib.community)
- graph – networkx/igraph object
- configurations – list of lists (one for each method) of Parameter and BoolParameter objects

Returns

At each call the generator yields a tuple composed by: the actual method, its current configuration and the obtained communities.

Raises ValueError – if the number of methods is different from the number of configurations specified

Example

```python
>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
```
Louvain

```python
g = nx.karate_club_graph()
resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
randomize = ensemble.BoolParameter(name="randomize")
louvain_conf = [resolution, randomize]
```

Angel

```python
threshold = ensemble.Parameter(name="threshold", start=0.1, end=1, step=0.1)
angel_conf = [threshold]
```

`methods = [algorithms.louvain, algorithms.angel]
for communities in ensemble.pool(g, methods, [louvain_conf, angel_conf]):
 print(communities)
```

---

### Optimal Configuration Search

In some scenarios it could be helpful delegate to the library the selection of the method parameters to obtain a partition that optimize a given quality function. cdlib allows to do so using the methods `grid_search` and `random_search`. Finally, `pool_grid_filter` generalizes such approach allowing to obtain the optimal partitions from a pool of different algorithms.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>grid_search</code></td>
<td>Returns the optimal partition of the specified graph w.r.t. the selected algorithm and quality score.</td>
</tr>
<tr>
<td><code>random_search</code></td>
<td>Returns the optimal partition of the specified graph w.r.t. quality score.</td>
</tr>
<tr>
<td><code>pool_grid_filter</code></td>
<td>Execute a pool of community discovery internal on the input graph.</td>
</tr>
</tbody>
</table>

#### cdlib.ensemble.grid_search

Returns the optimal partition of the specified graph w.r.t. the selected algorithm and quality score.

**Parameters**

- `method` – community discovery method (from `nclib.community`)
- `graph` – networkx/igraph object
- `parameters` – list of Parameter and BoolParameter objects
- `quality_score` – a fitness function to evaluate the obtained partition (from `nclib.evaluation`)
- `aggregate` – function to select the best fitness value. Possible values: min/max

**Returns** at each call the generator yields a tuple composed by: the optimal configuration for the given algorithm, input parameters and fitness function; the obtained communities; the fitness score.

**Example**

```python
>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
```
>>> communities, scoring = ensemble.grid_search(graph=g, method=algorithms.
˓→louvain,
>>>                               parameters=[resolution,
˔→  
>>>                               randomize],
>>>                               quality_score=evaluation.
˔→  
>>>                               erdos_renyi_modularity,
摅→  
>>>                               aggregate=max)
摅→  
>>> print(communities, scoring)

cdlib.ensemble.random_search

random_search (graph, method, parameters, quality_score, instances=10, aggregate=<built-in function max>)

Returns the optimal partition of the specified graph w.r.t. the selected algorithm and quality score over a random-

ized sample of the input parameters.

Parameters

- method – community discovery method (from nclib.community)
- graph – networkx/graph object
- parameters – list of Parameter and BoolParameter objects
- quality_score – a fitness function to evaluate the obtained partition (from
  nclib.evaluation)
- instances – number of randomly selected parameters configurations
- aggregate – function to select the best fitness value. Possible values: min/max

Returns at each call the generator yields a tuple composed by: the optimal configuration for the
given algorithm, input paramters and fitness function; the obtained communities; the fitness score

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()  
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)  
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> communities, scoring = ensemble.random_search(graph=g, method=algorithms.
˓→louvain,
摅→  
>>>                               parameters=[resolution,
˔→  
>>>                               randomize],
摅→  
>>>                               quality_score=evaluation.erdos_renyi_modularity,
摅→  
>>>                               aggregate=max)
摅→  
>>> print(communities, scoring)

cdlib.ensemble.pool_grid_filter

pool_grid_filter (graph, methods, configurations, quality_score, aggregate=<built-in function max>)

Execute a pool of community discovery internal on the input graph. Returns the optimal partition for each
algorithm given the specified quality function.
Parameters

- **methods** – list community discovery methods (from nclib.community)
- **graph** – networkx/igraph object
- **configurations** – list of lists (one for each method) of Parameter and BoolParameter objects
- **quality_score** – a fitness function to evaluate the obtained partition (from nclib.evaluation)
- **aggregate** – function to select the best fitness value. Possible values: min/max

Returns at each call the generator yields a tuple composed by: the actual method, its optimal configuration; the obtained communities; the fitness score.

Raises ValueError – if the number of methods is different from the number of configurations specified

Example

```python
>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> # Louvain
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> louvain_conf = [resolution, randomize]
>>> # Angel
>>> threshold = ensemble.Parameter(name="threshold", start=0.1, end=1, step=0.1)
>>> angel_conf = [threshold]
>>> methods = [algorithms.louvain, algorithms.angel]
>>> for communities, scoring in ensemble.pool_grid_filter(g, methods, [louvain_‐conf, angel_conf], quality_score=evaluation.erdos_renyi_modularity, aggregate=max):
... print(communities, scoring)
```

1.5.4 Evaluation

The evaluation of Community Discovery algorithms is not an easy task. CDlib implements two families of evaluation strategies:

- Internal evaluation through quality scores
- External evaluation through partitions comparison

Fitness Functions

Fitness functions allows to summarize the characteristics of a computed set of communities. CDlib implements the following quality scores:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg_distance</td>
<td>Average distance</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>avg_embeddedness</code></td>
<td>Average embeddedness of nodes within the community.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>average_internal_degree</code></td>
<td>The average internal degree of the community set.</td>
<td><code>graph, community, ...</code></td>
</tr>
<tr>
<td><code>avg_transitivity</code></td>
<td>Average transitivity.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>conductance</code></td>
<td>Fraction of total edge volume that points outside the community.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>cut_ratio</code></td>
<td>Fraction of existing edges (out of all possible edges) leaving the community.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>edges_inside</code></td>
<td>Number of edges internal to the community.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>expansion</code></td>
<td>Number of edges per community node that point outside the cluster.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>fraction_over_median_degree</code></td>
<td>Fraction of community nodes of having internal degree higher than the median degree value.</td>
<td><code>graph, ...</code></td>
</tr>
<tr>
<td><code>hub_dominance</code></td>
<td>Hub dominance.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>internal_edge_density</code></td>
<td>The internal density of the community set.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>normalized_cut</code></td>
<td>Normalized variant of the Cut-Ratio</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>max_odf</code></td>
<td>Maximum fraction of edges of a node of a community that point outside the community itself.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>avg_odf</code></td>
<td>Average fraction of edges of a node of a community that point outside the community itself.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>flake_odf</code></td>
<td>Fraction of nodes in S that have fewer edges pointing inside than to the outside of the community.</td>
<td><code>graph, community, **kwargs</code></td>
</tr>
<tr>
<td><code>scaled_density</code></td>
<td>Scaled density.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>significance</code></td>
<td>Significance estimates how likely a partition of dense communities appear in a random graph.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>size</code></td>
<td>Size is the number of nodes in the community.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>surprise</code></td>
<td>Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.</td>
<td><code>graph, communities, **kwargs</code></td>
</tr>
<tr>
<td><code>triangle_participation_ratio</code></td>
<td>Fraction of community nodes that belong to a triad.</td>
<td><code>graph, ...</code></td>
</tr>
<tr>
<td><code>purity</code></td>
<td>Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities.</td>
<td><code>communities</code></td>
</tr>
</tbody>
</table>

---

### `cdlib.evaluation.avg_distance`

#### `avg_distance` (graph, communities, **kwargs)

Average distance.

The average distance of a community is defined average path length across all possible pair of nodes composing it.

**Parameters**

- `graph` – a networkx/igraph object
- `communities` – NodeClustering object
- `summary` – boolean. If `True` it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default `True`. 
Returns If `summary==True` a `FitnessResult` object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.avg_distance(g, communities)
```

cdlib.evaluation.avg_embeddedness

```python
avg_embeddedness(graph, communities, **kwargs)
```

Average embeddedness of nodes within the community.

The embeddedness of a node `n` w.r.t. a community `C` is the ratio of its degree within the community and its overall degree.

\[
emb(n, C) = \frac{k_C}{k_n}
\]

The average embeddedness of a community `C` is:

\[
avg_{emb}(c) = \frac{1}{|C|} \sum_{i \in C} \frac{k_C}{k_n}
\]

Parameters

- `graph` – a networkx/igraph object
- `communities` – NodeClustering object
- `summary` – boolean. If `True` it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default `True`.

Returns If `summary==True` a `FitnessResult` object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> ave = evaluation.avg_embeddedness(g, communities)
```

References

cdlib.evaluation.average_internal_degree

```python
average_internal_degree(graph, community, **kwargs)
```

The average internal degree of the community set.

\[
f(S) = \frac{2m_S}{n_S}
\]

where : `math:` `n_S` is the number of community internal edges and : `math:` `m_S` is the number of community nodes.

Parameters

1.5. Reference
• **graph** – a networkx/igraph object
• **community** – NodeClustering object
• **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.average_internal_degree(g, communities)
```

**References**


---

**cdlib.evaluation.avg_transitivity**

**avg_transitivity** *(graph, communities, **kwargs)*

Average transitivity.

The average transitivity of a community is defined the as the average clustering coefficient of its nodes w.r.t. their connection within the community itself.

**Parameters**

• **graph** – a networkx/igraph object
• **communities** – NodeClustering object
• **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.avg_transitivity(g, communities)
```

---

**cdlib.evaluation.conductance**

**conductance** *(graph, community, **kwargs)*

Fraction of total edge volume that points outside the community.

\[
f(S) = \frac{c_S}{2m_S + c_S}
\]

where \(c_S\) is the number of community nodes and, \(m_S\) is the number of community edges.
Parameters

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.conductance(g,communities)
```

References


**cdlib.evaluation.cut_ratio**

cut_ratio(graph, community, **kwargs)

Fraction of existing edges (out of all possible edges) leaving the community.

.. math:: f(S) = \frac{c_S}{n_S (n - n_S)}

where \(c_S\) is the number of community nodes and, \(n_S\) is the number of edges on the community boundary

Parameters

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.cut_ratio(g,communities)
```

References


**cdlib.evaluation.edges_inside**

edges_inside(graph, community, **kwargs)

Number of edges internal to the community.
Parameters

- `graph` – a networkx/igraph object
- `community` – NodeClustering object
- `summary` – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If `summary==True` a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.edges_inside(g,communities)
```

References


---

**cdlib.evaluation.expansion**

`expansion(graph, community, **kwargs)`

Number of edges per community node that point outside the cluster.

\[ f(S) = \frac{c_S}{n_S} \]

where \(n_S\) is the number of edges on the community boundary, \(c_S\) is the number of community nodes.

Parameters

- `graph` – a networkx/igraph object
- `community` – NodeClustering object
- `summary` – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If `summary==True` a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.expansion(g,communities)
```

References

cdlib.evaluation.fraction_over_median_degree

fraction_over_median_degree (graph, community, **kwargs)

Fraction of community nodes of having internal degree higher than the median degree value.

\[ f(S) = \frac{|\{ u : u \in S, |\{(u, v) : v \in S\}| > d_m \}|}{n_S} \]

where \( d_m \) is the internal degree median value

Parameters

- graph – a networkx/igraph object
- community – NodeClustering object
- summary – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.fraction_over_median_degree(g, communities)
```

References


cdlib.evaluation.hub_dominance

hub_dominance (graph, communities, **kwargs)

Hub dominance.

The hub dominance of a community is defined as the ratio of the degree of its most connected node w.r.t. the theoretically maximal degree within the community.

Parameters

- graph – a networkx/igraph object
- communities – NodeClustering object
- summary – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.hub_dominance(g, communities)
```
cdlib.evaluation.internal_edge_density

**internal_edge_density**(graph, community, **kwargs)

The internal density of the community set.

\[
f(S) = \frac{m_S}{n_S(n_S-1)/2}
\]

where \(m_S\) is the number of community internal edges and \(n_S\) is the number of community nodes.

**Parameters**

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.internal_edge_density(g, communities)
```

**References**


cdlib.evaluation.normalized_cut

**normalized_cut**(graph, community, **kwargs)

Normalized variant of the Cut-Ratio

\[
f(S) = \frac{c_S}{2m + c_S} + \frac{c_S}{2(mm) + c_S}
\]

where \(m\) is the number of graph edges, \(m_S\) is the number of community internal edges and \(c_S\) is the number of community nodes.

**Parameters**

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

**Returns** If summary==True a FitnessResult object, otherwise a list of floats.

Example:
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.normalized_cut(g, communities)

References


cdlib.evaluation.max_odf

max_odf (graph, community, **kwargs)

Maximum fraction of edges of a node of a community that point outside the community itself.

\[
\max_{u \in S} \frac{\{(u, v) \in E : v \notin S\}}{d(u)}
\]

where \( E \) is the graph edge set, \( v \) is a node in \( S \) and \( d(u) \) is the degree of \( u \)

Parameters

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns

If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.max_odf(g, communities)
```

References


cdlib.evaluation.avg_odf

avg_odf (graph, community, **kwargs)

Average fraction of edges of a node of a community that point outside the community itself.

\[
\frac{1}{n_S} \sum_{u \in S} \frac{\{(u, v) \in E : v \notin S\}}{d(u)}
\]

where \( E \) is the graph edge set, \( v \) is a node in \( S \), \( d(u) \) is the degree of \( u \) and \( n_S \) is the set of community nodes.

Parameters

1.5. Reference
• **graph** – a networkx/igraph object

• **community** – NodeClustering object

• **summary** – boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.

**Returns** If **summary==True** a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.avg_odf(g, communities)
```

**References**


---

cdlib.evaluation.flake_odf

**flake_odf** *(graph, community, **kwargs)*

Fraction of nodes in S that have fewer edges pointing inside than to the outside of the community.

\[
f(S) = \frac{|\{u : u \in S, [(u, v) \in E : v \in S] < d(u)/2\}|}{n_S}
\]

where \(E\) is the graph edge set, \(v\) is a node in \(S\), \(d(u)\) is the degree of \(u\) and \(n_S\) is the set of community nodes.

**Parameters**

• **graph** – a networkx/igraph object

• **community** – NodeClustering object

• **summary** – boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.

**Returns** If **summary==True** a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.flake_odf(g, communities)
```

**References**

**cdlib.evaluation.scaled_density**

*scaled_density*(graph, communities, **kwargs)

Scaled density.

The scaled density of a community is defined as the ratio of the community density w.r.t. the complete graph density.

**Parameters**

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object
- **summary** – boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.

**Returns**

If **summary==True** a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.scaled_density(g, communities)
```

**cdlib.evaluation.significance**

*significance*(graph, communities, **kwargs)

Significance estimates how likely a partition of dense communities appear in a random graph.

**Parameters**

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object

**Returns**

FitnessResult object

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation

>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.significance(g, communities)
```

**References**


**cdlib.evaluation.size**

*size*(graph, communities, **kwargs)

Size is the number of nodes in the community
Parameters

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> sz = evaluation.size(g, communities)
```

**cdlib.evaluation.surprise**

**surprise** *(graph, communities, **kwargs)*

Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random realization, the better the quality of the community structure.

Parameters

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object

Returns FitnessResult object

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.surprise(g, communities)
```

References


**cdlib.evaluation.triangle_participation_ratio**

**triangle_participation_ratio** *(graph, community, **kwargs)*

Fraction of community nodes that belong to a triad.

\[
f(S) = \frac{|\{u : u \in S, \{(v, w) : v, w \in S, (u, v) \in E, (u, w) \in E, (v, w) \in E \} \neq \emptyset\}|}{n_S}
\]

where \(n_S\) is the set of community nodes.
Parameters

- **graph** – a networkx/igraph object
- **community** – NodeClustering object
- **summary** – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.triangle_participation_ratio(g, communities)
```

References


cdlib.evaluation.purity

**purity**(communities)

Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities

Parameters communities – AttrNodeClustering object

Returns FitnessResult object

Example:

```python
>>> from cdlib.algorithms import eva
>>> from cdlib import evaluation
>>> import random
>>> l1 = ['A', 'B', 'C', 'D']
>>> l2 = ['E', 'F', 'G']
>>> g = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g.nodes():
... labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)}
>>> communities = eva(g_attr, labels, alpha=0.5)
>>> pur = evaluation.purity(communities)
```

References


Among the fitness function a well-defined family of measures is the Modularity-based one:

**erdos_renyi_modularity**(graph, communities, ...)

Erdos-Renyi modularity is a variation of the Newman-Girvan one.
Table 23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>link_modularity(graph, communities, **kwargs)</td>
<td>Quality function designed for directed graphs with overlapping communities.</td>
</tr>
<tr>
<td>modularity_density(graph, communities, **kwargs)</td>
<td>The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures.</td>
</tr>
<tr>
<td>newman_girvan_modularity(graph, communities, ...)</td>
<td>Difference the fraction of intra community edges of a partition with the expected number of such edges if distributed according to a null model.</td>
</tr>
<tr>
<td>z_modularity(graph, communities, **kwargs)</td>
<td>Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit.</td>
</tr>
</tbody>
</table>

**cdlib.evaluation.erdos_renyi_modularity**

**erdos_renyi_modularity**(graph, communities, **kwargs)

Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are connected randomly with a constant probability $p$.

$$Q(S) = \frac{1}{m} \sum_{c \in S} \left( m_S \frac{mn_S(n_S)}{n(n_1)} \right)$$

where $m$ is the number of graph edges, $m_S$ is the number of community edges, $l_S$ is the number of edges from nodes in $S$ to nodes outside $S$.

**Parameters**

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object

**Returns** FitnessResult object

**Example:**

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.erdos_renyi_modularity(g, communities)
```

**References**


**cdlib.evaluation.link_modularity**

**link_modularity**(graph, communities, **kwargs)

Quality function designed for directed graphs with overlapping communities.

**Parameters**

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object

**Returns** FitnessResult object
Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.link_modularity(g, communities)
```

References


cdlib.evaluation.modularity_density

`modularity_density(graph, communities, **kwargs)`

The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of modularity based measures. The idea of this metric is to include the information about community size into the expected density of community to avoid the negligence of small and dense communities. For each community \( C \) in partition \( S \), it uses the average modularity degree calculated by \( d(C) = \frac{d_{\text{int}}(C)d_{\text{ext}}(C)}{d_{\text{int}}(C) + d_{\text{ext}}(C)} \) where \( d_{\text{int}}(C) \) and \( d_{\text{ext}}(C) \) are the average internal and external degrees of \( C \) respectively to evaluate the fitness of \( C \) in its network.

Finally, the modularity density can be calculated as follows:

\[
Q(S) = \sum_{C \in S} \frac{1}{n_C} \left( \sum_{i \in C} k_{iC}^{\text{int}} - \sum_{i \in C} k_{iC}^{\text{out}} \right)
\]

where \( n_C \) is the number of nodes in \( C \), \( k_{iC}^{\text{int}} \) is the degree of node \( i \) within \( C \) and \( k_{iC}^{\text{out}} \) is the degree of node \( i \) outside \( C \).

Parameters

- **graph** – a networkx/igraph object
- **communities** – NodeClustering object

Returns

FitnessResult object

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.modularity_density(g, communities)
```

References


cdlib.evaluation.newman_girvan_modularity

`newman_girvan_modularity(graph, communities, **kwargs)`

Difference the fraction of intra community edges of a partition with the expected number of such edges if distributed according to a null model.

1.5. Reference
In the standard version of modularity, the null model preserves the expected degree sequence of the graph under consideration. In other words, the modularity compares the real network structure with a corresponding one where nodes are connected without any preference about their neighbors.

\[ Q(S) = \frac{1}{m} \sum_{c \in S} \left( m_S - \frac{(2m_S + l_S)^2}{4m} \right) \]

where \( m \) is the number of graph edges, \( m_S \) is the number of community edges, \( l_S \) is the number of edges from nodes in \( S \) to nodes outside \( S \).

**Parameters**

- `graph` – a networkx/igraph object
- `communities` – NodeClustering object

**Returns** FitnessResult object

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.newman_girvan_modularity(g,communities)
```

**References**


**zdlib.evaluation.z_modularity**

`z_modularity(graph, communities, **kwargs)`

Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept of this version is based on an observation that the difference between the fraction of edges inside communities and the expected number of such edges in a null model should not be considered as the only contribution to the final quality of community structure.

**Parameters**

- `graph` – a networkx/igraph object
- `communities` – NodeClustering object

**Returns** FitnessResult object

Example:

```python
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.z_modularity(g,communities)
```

**References**

Some measures will return an instance of `FitnessResult` that takes together min/max/mean/std values of the computed index.

\[
\text{FitnessResult}(\text{min}, \text{max}, \text{score}, \text{std})
\]

**cdlib.evaluation.FitnessResult**

**class FitnessResult (min, max, score, std)**

\[\text{__init__}()\]

Initialize self. See `help(type(self))` for accurate signature.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td>Return number of occurrences of value.</td>
</tr>
<tr>
<td><code>index</code></td>
<td>Return first index of value.</td>
</tr>
</tbody>
</table>

**Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max</code></td>
<td>Alias for field number 1</td>
</tr>
<tr>
<td><code>min</code></td>
<td>Alias for field number 0</td>
</tr>
<tr>
<td><code>score</code></td>
<td>Alias for field number 2</td>
</tr>
<tr>
<td><code>std</code></td>
<td>Alias for field number 3</td>
</tr>
</tbody>
</table>

**Partition Comparisons**

It is often useful to compare different graph partition to assess their resemblance (i.e., to perform ground truth testing). **CDlib** implements the following partition comparisons scores:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adjusted_mutual_information(first_partition, ...)</code></td>
<td>Adjusted Mutual Information between two clusterings.</td>
</tr>
<tr>
<td><code>adjusted_rand_index(first_partition, ...)</code></td>
<td>Rand index adjusted for chance.</td>
</tr>
<tr>
<td><code>f1(first_partition, second_partition)</code></td>
<td>Compute the average F1 score of the optimal algorithms matches among the partitions in input.</td>
</tr>
<tr>
<td><code>nfl(first_partition, second_partition)</code></td>
<td>Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input.</td>
</tr>
<tr>
<td><code>normalized_mutual_information(...)</code></td>
<td>Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td><code>omega(first_partition, second_partition)</code></td>
<td>Index of resemblance for overlapping, complete coverage, network clusterings.</td>
</tr>
<tr>
<td><code>overlapping_normalized_mutual_information(...)</code></td>
<td>Overlapping Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td><code>overlapping_normalized_mutual_information(...)</code></td>
<td>Overlapping Normalized Mutual Information between two clusterings.</td>
</tr>
<tr>
<td><code>variation_of_information(first_partition, ...)</code></td>
<td>Variation of Information among two nodes partitions.</td>
</tr>
</tbody>
</table>

1.5. Reference
adjusted_mutual_information (first_partition, second_partition)

Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings $U$ and $V$, the AMI is given as:

$$AMI(U, V) = \frac{MI(U, V) - E(MI(U, V))}{\max(H(U), H(V)) - E(MI(U, V))}$$

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index.

Parameters

- **first_partition** – NodeClustering object
- **second_partition** – NodeClustering object

Returns MatchingResult object

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_mutual_information(louvain_communities,leiden_communities)
```

Reference


adjusted_rand_index (first_partition, second_partition)

Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

$$ARI = \frac{RI - Expected_{RI}}{\max(RI) - Expected_{RI}}$$

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).
ARI is a symmetric measure:

\[
\text{adjusted_rand_index}(a, b) == \text{adjusted_rand_index}(b, a)
\]

**Parameters**

- `first_partition` – NodeClustering object
- `second_partition` – NodeClustering object

**Returns**  MatchingResult object

**Example**

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_rand_index(louvain_communities, leiden_communities)
```

**Reference**


---

**cdlib.evaluation.f1**

**f1** *(first_partition, second_partition)*

Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.

**Parameters**

- `first_partition` – NodeClustering object
- `second_partition` – NodeClustering object

**Returns**  MatchingResult object

**Example**

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.f1(louvain_communities, leiden_communities)
```

**Reference**


---

**cdlib.evaluation.nf1**

**nf1** *(first_partition, second_partition)*

Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions.
Parameters

- **first_partition** – NodeClustering object
- **second_partition** – NodeClustering object

Returns MatchingResult object

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.nf1(louvain_communities, leiden_communities)
```

Reference


cdlib.evaluation.normalized_mutual_information

**normalized_mutual_information**(*first_partition*, *second_partition*)

Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by \( \sqrt{H(labels\_true) \ast H(labels\_pred)} \)

Parameters

- **first_partition** – NodeClustering object
- **second_partition** – NodeClustering object

Returns MatchingResult object

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.normalized_mutual_information(louvain_communities,
 leiden_communities)
```

cdlib.evaluation.omega

**omega**(*first_partition*, *second_partition*)

Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters

- **first_partition** – NodeClustering object
• second_partition – NodeClustering object

Returns MatchingResult object

Example

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.omega(louvain_communities, leiden_communities)
```


```python
from cdlib import evaluation, algorithms
```

```python
g = nx.karate_club_graph()
louvain_communities = algorithms.louvain(g)
leiden_communities = algorithms.leiden(g)
evaluation.omega(louvain_communities, leiden_communities)
```


```python
from cdlib import evaluation, algorithms
```

```python
g = nx.karate_club_graph()
louvain_communities = algorithms.louvain(g)
leiden_communities = algorithms.leiden(g)
evaluation.overlapping_normalized_mutual_information_LFK(louvain_communities, leiden_communities)
```


```python
from cdlib import evaluation, algorithms
```

```python
g = nx.karate_club_graph()
louvain_communities = algorithms.louvain(g)
leiden_communities = algorithms.leiden(g)
evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities, leiden_communities)
```

• **first_partition** – NodeClustering object

• **second_partition** – NodeClustering object

• **normalization** – one of “max” or “LFK”. Default “max” (corresponds to the main method described in the article)

**Returns** MatchingResult object

**Example**

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities, leiden_communities)
```

**Reference**


**cdlib.evaluation.variation_of_information**

**variation_of_information**(first_partition, second_partition)

Variation of Information among two nodes partitions.

$$ H(p) + H(q) - 2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

**Parameters**

• **first_partition** – NodeClustering object

• **second_partition** – NodeClustering object

**Returns** MatchingResult object

**Example**

```python
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.variation_of_information(louvain_communities, leiden_communities)
```

**Reference**


Some measures will return an instance of **MatchingResult** that takes together mean and standard deviation values of the computed index.

**MatchingResult**(score, std)
cdlib.evaluation.MatchingResult

class MatchingResult (score, std)

    __init__()
    Initialize self. See help(type(self)) for accurate signature.

Methods

count       Return number of occurrences of value.
index       Return first index of value.

Attributes

cscore       Alias for field number 0
       std       Alias for field number 1

1.5.5 Input-Output

Functions to save/load CDlib communities to/from file.

CSV format

The easiest way to save the result of a community discovery algorithm is to organize it in a .csv file. The following
methods allows to read/write communities to/from csv.

read_community_csv(path[, delimiter, ...]) Read community list from comma separated value (csv)
       file.
write_community_csv(communities, path[, ...]) Save community structure to comma separated value
       (csv) file.

cdb.readwrite.read_community_csv

read_community_csv (path, delimiter=' ', nodetype=<class 'str'>, zip=False)  Read community list from comma separated value (csv) file.

Parameters
    • path – input filename
    • delimiter – column delimiter
    • nodetype – specify the type of node labels, default str
    • zip – wheter the file is compressed or not, default False

Returns  NodeClustering object

Example

1.5. Reference
>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_csv(coms, "communities.csv", ",")
>>> coms = readwrite.read_community_csv(coms, "communities.csv", ",", str)

cdlib.readwrite.write_community_csv

write_community_csv (communities, path, delimiter=',', zip=False)
Save community structure to comma separated value (csv) file.

Parameters

• communities – a NodeClustering object
• path – output filename
• delimiter – column delimiter
• zip – wheter to copress the csv, default False

Example

>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_csv(coms, "communities.csv", ",")

Note: CSV formatting allows only to save/retrieve NodeClustering object loosing most of the metadata present in the CD computation result - e.g., algorithm name, parameters, coverage...

JSON format

JSON format allows to store/load community discovery algorithm results in a more comprehensive way.

read_community_json (path[, zip])
Read community list from JSON file.

write_community_json (communities, path[, zip])
Generate a JSON representation of the clustering object

cdlib.readwrite.read_community_json

read_community_json (path, zip=False)
Read community list from JSON file.

Parameters

• path – input filename
• zip – wheter the file is in a copress format, default False

Returns a Clustering object
Example

```python
>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_json(coms, "communities.json")
>>> readwrite.read_community_json(coms, "communities.json")
```

cdlib.readwrite.write_community_json

write_community_json(communitys, path, zip=False)
Generate a JSON representation of the clustering object

Parameters
- `communitys` - a cdlib clustering object
- `path` - output filename
- `zip` - wheter to copress the JSON, default False

Returns a JSON formatted string representing the object

Example

```python
>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_json(coms, "communities.json")
```

Note: JSON formatting allows only to save/retrieve all kind of Clustering object maintaining all their metadata - except for the graph object instance.

1.5.6 Visual Analytics

At the end of the analytical process it is often useful to visualize the obtained results. CDlib provides a few built-in facilities to ease such task.

Network Visualization

Visualizing a graph is always a good idea (if its size is reasonable).

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_network_clusters</code></td>
<td>Plot a graph with node color coding for communities.</td>
</tr>
<tr>
<td><code>plot_community_graph</code></td>
<td>Plot a algorithms-graph with node color coding for comm-</td>
</tr>
</tbody>
</table>

1.5. Reference
cdlib.viz.plot_network_clusters

plot_network_clusters(graph, partition, position=None, figsize=(8, 8), node_size=200, plot_overlaps=False, plot_labels=False, cmap=None, top_k=None, min_size=None)

Plot a graph with node color coding for communities.

Parameters

- **graph** – NetworkX/igraph graph
- **partition** – NodeClustering object
- **position** – A dictionary with nodes as keys and positions as values. Example: networkx.fruchterman_reingold_layout(G). By default, uses nx.spring_layout(g)
- **figsize** – the figure size; it is a pair of float, default (8, 8)
- **node_size** – int, default 200
- **plot_overlaps** – bool, default False. Flag to control if multiple algorithms memberships are plotted.
- **plot_labels** – bool, default False. Flag to control if node labels are plotted.
- **cmap** – str or Matplotlib colormap, Colormap(Matplotlib colormap) for mapping intensities of nodes. If set to None, original colormap is used.
- **top_k** – int, Show the top K influential communities. If set to zero or negative value indicates all.
- **min_size** – int, Exclude communities below the specified minimum size.

Example:

```python
>>> from cdlib import algorithms, viz
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> pos = nx.spring_layout(g)
>>> viz.plot_network_clusters(g, coms, pos)
```

cdlib.viz.plot_community_graph

plot_community_graph(graph, partition, figsize=(8, 8), node_size=200, plot_overlaps=False, plot_labels=False, cmap=None, top_k=None, min_size=None)

Plot a algorithms-graph with node color coding for communities.

Parameters

- **graph** – NetworkX/igraph graph
- **partition** – NodeClustering object
- **figsize** – the figure size; it is a pair of float, default (8, 8)
- **node_size** – int, default 200
- **plot_overlaps** – bool, default False. Flag to control if multiple algorithms memberships are plotted.
- **plot_labels** – bool, default False. Flag to control if node labels are plotted.
• **cmap** – str or Matplotlib colormap, Colormap(Matplotlib colormap) for mapping intensities of nodes. If set to None, original colormap is used.

• **top_k** – int, Show the top K influential communities. If set to zero or negative value indicates all.

• **min_size** – int, Exclude communities below the specified minimum size.

Example:

```python
>>> from cdlib import algorithms, viz
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> viz.plot_community_graph(g, coms)
```

**Analytics plots**

Community evaluation outputs can be easily used to generate a visual representation of the main partition characteristics.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_sim_matrix</code></td>
<td>Plot a similarity matrix between a list of clusterings, using the provided scoring function.</td>
</tr>
<tr>
<td><code>plot_com_stat</code></td>
<td>Plot the distribution of a property among all communities for a clustering, or a list of clusterings (violin-plots)</td>
</tr>
<tr>
<td><code>plot_com_properties_relation</code></td>
<td>Plot the relation between two properties/fitness function of a clustering</td>
</tr>
<tr>
<td><code>plot_scoring</code></td>
<td>Plot the scores obtained by a list of methods on a list of graphs.</td>
</tr>
</tbody>
</table>

**cdlib.viz.plot_sim_matrix**

`plot_sim_matrix` *(clusterings, scoring)*

Plot a similarity matrix between a list of clusterings, using the provided scoring function.

**Parameters**

- **clusterings** – list of clusterings to compare
- **scoring** – the scoring function to use

**Returns**

a ClusterGrid instance

Example:

```python
>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> clustermap = viz.plot_sim_matrix([coms, coms2], evaluation.adjusted_mutual_information)
```
cdlib.viz.plot_com_stat

`plot_com_stat(com_clusters, com_fitness)`
Plot the distribution of a property among all communities for a clustering, or a list of clusterings (violin-plots)

Parameters
- `com_clusters` – list of clusterings to compare, or a single clustering
- `com_fitness` – the fitness/community property to use

Returns the violin-plots

Example:
```python
>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> violinplot = viz.plot_com_stat([coms, coms2], evaluation.size)
```

cdlib.viz.plot_com_properties_relation

`plot_com_properties_relation(com_clusters, com_fitness_x, com_fitness_y, **kwargs)`
Plot the relation between two properties/fitness function of a clustering

Parameters
- `com_clusters` – clustering(s) to analyze (cluster or cluster list)
- `com_fitness_x` – first fitness/community property
- `com_fitness_y` – first fitness/community property
- `kwargs` – parameters for the seaborn lmplot

Returns a seaborn lmplot

Example:
```python
>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> lmplot = viz.plot_com_properties_relation([coms, coms2], evaluation.size, evaluation.internal_edge_density)
```

cdlib.viz.plot_scoring

`plot_scoring(graphs, ref_partitions, graph_names, methods, scoring=<function adjusted_mutual_information>, nbRuns=5)`
Plot the scores obtained by a list of methods on a list of graphs.

Parameters
- `graphs` – list of graphs on which to make computations
- `ref_partitions` – list of reference clusterings corresponding to graphs
• **graph_names** – list of the names of the graphs to display
• **methods** – list of functions that take a graph as input and return a Clustering as output
• **scoring** – the scoring function to use, default anmi
• **nbRuns** – number of runs to do for each method on each graph

**Returns** a seaborn lineplot

Example:

```python
>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx

>>> g1 = nx.algorithms.community.LFR_benchmark_graph(1000, 3, 1.5, 0.5, min_community=20, average_degree=5)
>>> g2 = nx.algorithms.community.LFR_benchmark_graph(1000, 3, 1.5, 0.7, min_community=20, average_degree=5)
>>> names = ["g1", "g2"]
>>> graphs = [g1, g2]

>>> for g in graphs:
>>> references.append(NodeClustering(communities={frozenset(g.nodes[v][
'community']) for v in g}, graph=g, method_name="reference"))
>>> algos = [algorithms.crisp_partition.louvain, algorithms.crisp_partition.label_propagation]

>>> viz.plot_scoring(graphs, references, names, aldos, nbRuns=2)
```

### 1.5.7 Remote Datasets

`cdlib` allows to retrieve existing datasets, along with their ground truth partitions (if available), from an ad-hoc remote repository.

**Note:** The following features are still under testing: therefore, they are accessible only on the GitHub version of the library.

<table>
<thead>
<tr>
<th>available_networks()</th>
<th>List the remotely available network datasets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>available_ground_truths()</td>
<td>List the remotely available network ground truth datasets.</td>
</tr>
<tr>
<td>fetch_network_data([net_name, net_type])</td>
<td>Load the required network from the remote repository</td>
</tr>
<tr>
<td>fetch_ground_truth_data([net_name, graph])</td>
<td>Load the required ground truth clustering from the remote repository</td>
</tr>
<tr>
<td>fetch_network_ground_truth([net_name, net_type])</td>
<td>Load the required network, along with its ground truth partition, from the remote repository.</td>
</tr>
</tbody>
</table>

**cdlib.datasets.available_networks**

**available_networks()**

List the remotely available network datasets.

**Returns** list of network names

**Example**
```python
>>> from cdlib import datasets
graph_name_list = datasets.available_networks()
```

cdlib.datasets.available_ground_truths

```python
cdlib.datasets.available_ground_truths()
```

**available_ground_truths()**

List the remotely available network ground truth datasets.

**Returns** list of network names

**Example**

```python
>>> from cdlib import datasets
graph_name_list = datasets.available_ground_truths()
```

cdlib.datasets.fetch_network_data

```python
cdlib.datasets.fetch_network_data(net_name='karate_club', net_type='igraph')
```

**fetch_network_data** (*net_name='karate_club', net_type='igraph'*)

Load the required network from the remote repository

**Parameters**

- net_name – network name
- net_type – desired graph object among “networkx” and “igraph”. Default, igraph.

**Returns** a graph object

**Example**

```python
>>> from cdlib import datasets
G = datasets.fetch_network_data(net_name="karate_club", net_type="igraph")
```

cdlib.datasets.fetch_ground_truth_data

```python
cdlib.datasets.fetch_ground_truth_data(net_name='karate_club', graph=None)
```

**fetch_ground_truth_data** (*net_name='karate_club', graph=None*)

Load the required ground truth clustering from the remote repository

**Parameters**

- net_name – network name
- graph – the graph object associated to the ground truth (optional)

**Returns** a NodeClustering object

**Example**

```python
>>> from cdlib import datasets
gt_coms = datasets.fetch_ground_truth_data(fetch_ground_truth_data="karate_club")
```

cdlib.datasets.fetch_network_ground_truth

```python
cdlib.datasets.fetch_network_ground_truth(net_name='karate_club', net_type='igraph')
```

**fetch_network_ground_truth** (*net_name='karate_club', net_type='igraph'*)

Load the required network, along with its ground truth partition, from the remote repository.
Parameters

- **net_name** – network name
- **net_type** – desired graph object among “networkx” and “igraph”. Default, igraph.

**Returns** a tuple of (graph_object, NodeClustering)

**Example**

```python
>>> from cdlib import datasets
>>> G, gt_coms = datasets.fetch_network_ground_truth(fetch_ground_truth_data=
 "karate_club", net_type="igraph")
```

### 1.5.8 Utilities

CDlib exposes a few utilities to manipulate graph objects generated with *igraph* and *networkx*.

#### Graph Transformation

Transform igraph to/from networkx objects.

```python
cdlib.utils.convert_graph_formats
```

**cdlib.utils.convert_graph_formats**

**convert_graph_formats** *(graph, desired_format)*

Converts from/to networkx/igraph

**Parameters**

- **graph** – original graph object
- **desired_format** – desired final type. Either nx.Graph or ig.Graph
- **directed** – boolean, default *False*

**Returns** the converted graph

**Raises** *TypeError* – if input graph is neither an instance of nx.Graph nor ig.Graph

#### Identifier mapping

Remapping of graph nodes. It is often a good idea - to limit the memory usage - to use progressive integers as node labels. CDlib automatically - and transparently - makes the conversion for the user, however, this step can be costly: for such reason the library also exposes facilities to directly pre/post process the network/community data.

```python
nx_node_integer_mapping
remap_node_communities
```

**nx_node_integer_mapping** *(graph)*

Maps node labels from strings to integers.

**remap_node_communities** *(communities, node_map)*

Apply a map to the obtained communities to retrieve the original node labels.
cdlib.utils.nx_node_integer_mapping

nx_node_integer_mapping(graph)
Maps node labels from strings to integers.

Parameters graph – networkx graph

Returns if the node labels are string: networkx graph, dictionary <numeric_id, original_node_label>, false otherwise

cdlib.utils.remap_node_communities

remap_node_communities(communities, node_map)
Apply a map to the obtained communities to retrieve the original node labels

Parameters

• communities – NodeClustering object
• node_map – dictionary <numeric_id, node_label>

Returns remapped communities

1.6 Developer Guide

1.7 Bibliography

CDlib was developed for research purposes.

Reference algorithms:

• Crisp Partition:
  – GDMP2: Chen, Jie, and Yousef Saad. Dense subgraph extraction with application to community detection. IEEE Transactions on Knowledge and Data Engineering 24.7 (2012): 1216-1230.

- **Rb_pots:**


- **Significance_communities:** Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in community structure. Scientific Reports, 3, 2930. 10.1038/srep02930


- **Async_fluid:** Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesús Labarta, Ulises Cortés, Toyotaro Suzumura T. Fluid Communities: A Competitive and Highly Scalable Community Detection Algorithm.

- **DER:** M. Kozdoba and S. Mannor, Community Detection via Measure Space Embedding, NIPS 2015


- **SBM_dl_nested:** Tiago P. Peixoto, Hierarchical block structures and high-resolution model selection in large networks. Physical Review X 4.1 (2014): 011047

- **Edge clustering:**

- **Overlapping partition:**
Demon:


Kclique: Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, Uncovering the overlapping community structure of complex networks in nature and society Nature 435, 814-818, 2005, doi:10.1038/nature03607


Reference evaluation:
- Comparison:


– nf1:


• Fitness:


So far it has been used as support to the following publications:

• Hubert, M. Master Thesis. (2020) Crawling and Analysing code review networks on industry and open source data


C

cdlib.algorithms, 56

cdlib.datasets, 125

cdlib.ensemble, 92

cdlib.evaluation, 97

cdlib.readwrite, 119

cdlib.utils, 127

cdlib.viz, 121
Symbols

__init__() (BoolParameter method), 93
__init__() (FitnessResult method), 113
__init__() (MatchingResult method), 119
__init__() (Parameter method), 93
adjusted_mutual_information() (AttrNodeClustering method), 32
adjusted_mutual_information() (BiNodeClustering method), 43
adjusted_mutual_information() (FuzzyNodeClustering method), 20
adjusted_mutual_information() (in module cdlib.evaluation), 114
adjusted_mutual_information() (NodeClustering method), 7
adjusted_rand_index() (AttrNodeClustering method), 32
adjusted_rand_index() (BiNodeClustering method), 44
adjusted_rand_index() (FuzzyNodeClustering method), 20
adjusted_rand_index() (in module cdlib.evaluation), 114
adjusted_rand_index() (NodeClustering method), 7
agdl() (in module cdlib.algorithms), 57
angel() (in module cdlib.algorithms), 75
aslpaw() (in module cdlib.algorithms), 58
async_fluid() (in module cdlib.algorithms), 58
AttrNodeClustering (class in cdlib), 32
available_ground_truths() (in module cdlib.datasets), 126
available_networks() (in module cdlib.datasets), 125
average_internal_degree() (AttrNodeClustering method), 33
average_internal_degree() (BiNodeClustering method), 45
average_internal_degree() (FuzzyNodeClustering method), 21
average_internal_degree() (in module cdlib.evaluation), 99
average_internal_degree() (NodeClustering method), 8
avg_distance() (in module cdlib.evaluation), 98
avg_embeddedness() (in module cdlib.evaluation), 99
avg_odf() (AttrNodeClustering method), 33
avg_odf() (BiNodeClustering method), 45
avg_odf() (FuzzyNodeClustering method), 21
avg_odf() (in module cdlib.evaluation), 105
avg_odf() (NodeClustering method), 8
avg_transitivity() (in module cdlib.evaluation), 100
belief() (in module cdlib.algorithms), 59
big_clam() (in module cdlib.algorithms), 75
bimlp() (in module cdlib.algorithms), 90
BiNodeClustering (class in cdlib), 43
BoolParameter (class in cdlib.ensemble), 93

C

cdlib.algorithms (module), 56, 92
cdlib.datasets (module), 125
cdlib.ensemble (module), 92
cdlib.evaluation (module), 97
cdlib.readwrite (module), 119
cdlib.utils (module), 127
cdlib.viz (module), 121
chinesewhispers() (in module cdlib.algorithms), 60
conductance() (AttrNodeClustering method), 34
conductance() (BiNodeClustering method), 45
conductance() (FuzzyNodeClustering method), 21
conductance() (in module cdlib.evaluation), 100
conductance() (NodeClustering method), 9
cong() (in module cdlib.algorithms), 77
cutting() (in module cdlib.algorithms), 77
convert_graph_formats() (in module cdlib.utils), 127
cpm() (in module cdlib.algorithms), 59
cut_ratio() (AttrNodeClustering method), 34
cut_ratio() (BiNodeClustering method), 46
cut_ratio() (FuzzyNodeClustering method), 22
cut_ratio() (in module cdlib.evaluation), 101
cut_ratio() (NodeClustering method), 9
D

dannf() (in module cdlib.algorithms), 78
demon() (in module cdlib.algorithms), 78
der() (in module cdlib.algorithms), 61

E

EdgeClustering (class in cdlib), 54
demon() (in module cdlib.algorithms), 78
demon() (BiNodeClustering method), 46
demon() (FuzzyNodeClustering method), 22
demon() (NodeClustering method), 9
demon() (module cdlib.algorithms), 61
demon() (module cdlib.algorithms), 101
demon() (NodeClustering method), 9
der() (module cdlib.algorithms), 62
erdos_renyi_modularity() (AttrNodeClustering method), 35
erdos_renyi_modularity() (BiNodeClustering method), 46
erdos_renyi_modularity() (FuzzyNodeClustering method), 22
erdos_renyi_modularity() (module cdlib.evaluation), 110
erdos_renyi_modularity() (NodeClustering method), 10
evaluation() (AttrNodeClustering method), 35
evaluation() (BiNodeClustering method), 47
evaluation() (FuzzyNodeClustering method), 23
evaluation() (module cdlib.evaluation), 102
evaluation() (NodeClustering method), 10

F

f1() (AttrNodeClustering method), 35
f1() (BiNodeClustering method), 47
f1() (FuzzyNodeClustering method), 23
f1() (module cdlib.evaluation), 115
f1() (NodeClustering method), 10
evaluation() (module cdlib.datasets), 126
evaluation() (module cdlib.datasets), 126
FitnessResult (class in cdlib.evaluation), 113
flaf() (AttrNodeClustering method), 36
flaf() (BiNodeClustering method), 47
flaf() (FuzzyNodeClustering method), 23
flaf() (module cdlib.evaluation), 106
flaf() (NodeClustering method), 11
fraction_over_median_degree() (AttrNodeClustering method), 36
fraction_over_median_degree() (BiNodeClustering method), 48
fraction_over_median_degree() (NodeClustering method), 11
fraction_over_median_degree() (module cdlib.evaluation), 103
fraction_over_median_degree() (NodeClustering method), 11
fraction_over_median_degree() (module cdlib.evaluation), 103
FuzzyNodeClustering (class in cdlib), 19

G

gal() (module cdlib.algorithms), 63
gdmp2() (module cdlib.algorithms), 63
gal() (AttrNodeClustering method), 36
gal() (BiNodeClustering method), 48
gal() (EdgeClustering method), 55
gal() (FuzzyNodeClustering method), 24
gal() (NodeClustering method), 11
girvan_newman() (module cdlib.algorithms), 64
greedy_modularity() (module cdlib.algorithms), 64
grid_modularity() (module cdlib.ensemble), 94
grid_modularity() (module cdlib.ensemble), 95

H

hierarchical_link_community() (module cdlib.algorithms), 92
hub_dominance() (module cdlib.evaluation), 103

I

ilouvain() (module cdlib.algorithms), 89
inmap() (module cdlib.algorithms), 65
internal_edge_density() (AttrNodeClustering method), 37
internal_edge_density() (BiNodeClustering method), 48
internal_edge_density() (FuzzyNodeClustering method), 24
internal_edge_density() (module cdlib.evaluation), 104
internal_edge_density() (NodeClustering method), 12

K

kclique() (module cdlib.algorithms), 80

L

lais2() (module cdlib.algorithms), 65
lais2() (module cdlib.algorithms), 80
leiden() (module cdlib.algorithms), 66
leiden() (module cdlib.algorithms), 66
lais2() (module cdlib.algorithms), 81
lais2() (module cdlib.algorithms), 82
link_modularity() (AttrNodeClustering method), 37
link_modularity() (BiNodeClustering method), 48
link_modularity() (FuzzyNodeClustering method), 24
link_modularity() (module cdlib.evaluation), 110
link_modularity() (NodeClustering method), 12
louvain() (module cdlib.algorithms), 66
siblinarity_antichain() (in module cdlib.algorithms), 91
significance() (AttrNodeClustering method), 41
significance() (BiNodeClustering method), 52
significance() (FuzzyNodeClustering method), 28
significance() (in module cdlib.evaluation), 107
significance() (NodeClustering method), 16
significance_communities() (in module cdlib.algorithms), 70
size() (AttrNodeClustering method), 41
size() (BiNodeClustering method), 53
size() (FuzzyNodeClustering method), 29
size() (in module cdlib.evaluation), 107
size() (NodeClustering method), 16
slpa() (in module cdlib.algorithms), 86
spinglass() (in module cdlib.algorithms), 71
surprise() (AttrNodeClustering method), 41
surprise() (BiNodeClustering method), 53
surprise() (FuzzyNodeClustering method), 29
surprise() (in module cdlib.evaluation), 108
surprise() (NodeClustering method), 16
surprise_communities() (in module cdlib.algorithms), 71

to_edge_community_map() (EdgeClustering method), 55
to_json() (AttrNodeClustering method), 42
to_json() (BiNodeClustering method), 53
to_json() (EdgeClustering method), 55
to_json() (FuzzyNodeClustering method), 29
to_json() (NodeClustering method), 17
to_node_community_map() (AttrNodeClustering method), 42
to_node_community_map() (BiNodeClustering method), 53
to_node_community_map() (FuzzyNodeClustering method), 29
to_node_community_map() (NodeClustering method), 17
triangle_participation_ratio() (AttrNodeClustering method), 42
triangle_participation_ratio() (BiNodeClustering method), 53
triangle_participation_ratio() (FuzzyNodeClustering method), 29
triangle_participation_ratio() (in module cdlib.evaluation), 108
triangle_participation_ratio() (NodeClustering method), 17

V
variation_of_information() (AttrNodeClustering method), 42
variation_of_information() (BiNodeClustering method), 54
variation_of_information() (FuzzyNodeClustering method), 30
variation_of_information() (in module cdlib.evaluation), 118
variation_of_information() (NodeClustering method), 17

W
walktrap() (in module cdlib.algorithms), 72
wCommunity() (in module cdlib.algorithms), 87
write_community_csv() (in module cdlib.readwrite), 120
write_community_json() (in module cdlib.readwrite), 121

Z
z_modularity() (AttrNodeClustering method), 43
z_modularity() (BiNodeClustering method), 54
z_modularity() (FuzzyNodeClustering method), 30
z_modularity() (in module cdlib.evaluation), 112
z_modularity() (NodeClustering method), 17