
CDlib Documentation
Release 0.1.9

Giulio Rossetti

Sep 22, 2020

Contents

1 CDlib Dev Team 3

Python Module Index 131

Index 133

i

ii

CDlib Documentation, Release 0.1.9

CDlib is a Python software package that allows to extract, compare and evaluate communities from complex net-
works.

The library provides a standardized input/output for several existing Community Discovery algorithms. The imple-
mentations of all CD algorithms are inherited from existing projects, each one of them acknowledged in the dedicated
method reference page.

Date Python Versions Main Author GitHub pypl
2020-09-22 3.7-3.8 Giulio Rossetti Source Distribution

Contents 1

http://www.about.giuliorossetti.net
https://github.com/GiulioRossetti/CDlib
https://pypi.python.org/pypi/CDlib

CDlib Documentation, Release 0.1.9

2 Contents

CHAPTER 1

CDlib Dev Team

Name Contribution
Giulio Rossetti Library Design/Documentation
Letizia Milli Community Models Integration
Rémy Cazabet Visualization
Salvatore Citraro Community Models Integration

1.1 Overview

CDlib is a Python language software package for the extraction, comparison, and evaluation of communities from
complex networks.

1.1.1 Who uses CDlib?

The potential audience for CDlib includes mathematicians, physicists, biologists, computer scientists, and social
scientists.

1.1.2 Goals

CDlib is built upon the NetworkX python library and is intended to provide:

• a standard programming interface and community discovery implementations that are suitable for many appli-
cations,

• a rapid development environment for collaborative, multidisciplinary, projects.

3

http://www.about.giuliorossetti.net
https://github.com/letiziam
http://cazabetremy.fr
https://github.com/dsalvaz
https://networkx.github.io

CDlib Documentation, Release 0.1.9

1.1.3 The Python CDlib library

CDlib is a powerful Python package that allows simple and flexible partitioning of complex networks.

Most importantly, CDlib, as well as the Python programming language, is free, well-supported, and a joy to use.

1.1.4 Free software

CDlib is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome
contributions from the community.

1.1.5 EU H2020

CDlib is a result of an European H2020 project:

• SoBigData “Social Mining & Big Data Ecosystem”: under the scheme “INFRAIA-1-2014-2015: Research
Infrastructures”, grant agreement #654024.

1.2 Download

1.2.1 Software

Source and binary releases: https://pypi.python.org/pypi/cdlib

Github (latest development): https://github.com/GiulioRossetti/cdlib

1.2.2 Documentation

1.3 Installing CDlib

Before installing CDlib, you need to have setuptools installed.

1.3.1 Quick install

Get CDlib from the Python Package Index at pypl.

or install it with

pip install cdlib

and an attempt will be made to find and install an appropriate version that matches your operating system and Python
version.

You can install the development version with

pip install git://github.com/GiulioRossetti/cdlib.git

4 Chapter 1. CDlib Dev Team

http://www.sobigdata.eu
https://pypi.python.org/pypi/cdlib
https://github.com/GiulioRossetti/cdlib
https://pypi.python.org/pypi/CDlib/

CDlib Documentation, Release 0.1.9

1.3.2 Optional Dependencies

CDlib relies on a few packages calling C code (namely: python-igraph, leidenalg, angel_cd and
infomap). The default installation will not set up such requirements since their configuration under non unix-like
systems is not trivial and cannot be easily automated.

Such a choice has been made to allow (even) Windows user to install the library and get access to its core functionali-
ties.

To made available (most of) the optional packages you can either:

• (Windows) manually install the optional packages (versions details are specified in
requirements_optional.txt) following the original projects guidelines, or

• (Linux/OSX) run the command:

pip install cdlib[C]

Such caveat will install everything that can be easily automated under Linux/OSX.

(Advanced) Graph-tool

The only optional dependency that will remain unsatisfied following the previous procedures will be graph-tool (used
to add SBM models). If you need it up and running, refer to the official documentation.

1.3.3 Installing from source

You can install from source by downloading a source archive file (tar.gz or zip) or by checking out the source files
from the GitHub source code repository.

CDlib is a pure Python package; you don’t need a compiler to build or install it.

Source archive file

Download the source (tar.gz or zip file) from pypl or get the latest development version from GitHub

Unpack and change directory to the source directory (it should have the files README.txt and setup.py).

Run python setup.py install to build and install

GitHub

Clone the CDlib repostitory (see GitHub for options)

git clone https://github.com/GiulioRossetti/cdlib.git

Change directory to CDlib

Run python setup.py install to build and install

If you don’t have permission to install software on your system, you can install into another directory using the –user,
–prefix, or –home flags to setup.py.

For example

python setup.py install --prefix=/home/username/python

1.3. Installing CDlib 5

https://git.skewed.de/count0/graph-tool/wikis/installation-instructions
https://pypi.python.org/pypi/CDlib/
https://github.com/GiulioRossetti/CDlib/
https://github.com/GiulioRossetti/CDlib/

CDlib Documentation, Release 0.1.9

or

python setup.py install --home=~

or

python setup.py install --user

If you didn’t install in the standard Python site-packages directory you will need to set your PYTHONPATH variable
to the alternate location. See http://docs.python.org/2/install/index.html#search-path for further details.

1.3.4 Requirements

Python

To use CDlib you need Python 3.6 or later.

The easiest way to get Python and most optional packages is to install the Enthought Python distribution “Canopy” or
using Anaconda.

There are several other distributions that contain the key packages you need for scientific computing.

1.4 Tutorial

NClib is built upon networkx and is designed to extract, compare and evaluate network partitions.

You can find a few basilar examples to get started with cdlib in this notebook

1.5 Reference

CDlib composes of several modules, each one fulfilling a different task related to community detection.

1.5.1 Community Objects

cdlib provides data structures and methods for storing communities.

The choice of community class depends on the structure of the community generated by the selected algorithm.

Which community should I use?

Community Type cdlib class
Node Partition NodeClustering, FuzzyNodeClustering, AttrNodeClustering, BiNodeClustering
Edge Partition EdgeClustering

6 Chapter 1. CDlib Dev Team

http://docs.python.org/2/install/index.html#search-path
https://colab.research.google.com/github/KDDComplexNetworkAnalysis/CNA_Tutorials/blob/master/CDlib.ipynb

CDlib Documentation, Release 0.1.9

Community Types

Node Clustering

Overview

class NodeClustering(communities, graph, method_name, method_parameters=None, over-
lap=False)

Node Communities representation.

Parameters

• communities – list of communities

• graph – a networkx/igraph object

• method_name – community discovery algorithm name

• method_parameters – configuration for the community discovery algorithm used

• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)
Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the
AMI is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same
score value. This can be useful to measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted
Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)

Reference

1. Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct), 2837-2854.

1.5. Reference 7

CDlib Documentation, Release 0.1.9

adjusted_rand_index(clustering)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples
and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of
the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_index(a, b) == adjusted_rand_index(b, a)

Parameters clustering – NodeClustering object

Returns ARI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)

Reference

1. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

average_internal_degree(**kwargs)
The average internal degree of the algorithms set.

𝑓(𝑆) =
2𝑚𝑆

𝑛𝑆

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()

avg_odf(**kwargs)
Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

1

𝑛𝑆

∑︁
𝑢∈𝑆

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|
𝑑(𝑢)

8 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>>
>>> communities = eva(g, alpha=alpha)
>>> pur = communities.purity()

conductance(**kwargs)
Fraction of total edge volume that points outside the algorithms.

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆

where 𝑐𝑆 is the number of algorithms nodes and, 𝑚𝑆 is the number of algorithms edges

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()

cut_ratio(**kwargs)
Fraction of existing edges (out of all possible edges) leaving the algorithms.

..math:: f(S) = frac{c_S}{n_S (n n_S)}

where 𝑐𝑆 is the number of algorithms nodes and, 𝑛𝑆 is the number of edges on the algorithms boundary

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()

edges_inside(**kwargs)
Number of edges internal to the algorithms.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

1.5. Reference 9

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()

erdos_renyi_modularity()
Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network
are connected randomly with a constant probability 𝑝.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆
𝑚𝑛𝑆(𝑛𝑆1)

𝑛(𝑛1)
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

expansion(**kwargs)
Number of edges per algorithms node that point outside the cluster.

𝑓(𝑆) =
𝑐𝑆
𝑛𝑆

where 𝑛𝑆 is the number of edges on the algorithms boundary, 𝑐𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example

10 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝑆}| < 𝑑(𝑢)/2}|

𝑛𝑆

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()

fraction_over_median_degree(**kwargs)
Fraction of algorithms nodes of having internal degree higher than the median degree value.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) : 𝑣 ∈ 𝑆}| > 𝑑𝑚}|

𝑛𝑆

where 𝑑𝑚 is the internal degree median value

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()

get_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• parameters_to_display – parameters to display. By default, all float parameters.

• precision – precision used to plot parameters. default: 3

1.5. Reference 11

CDlib Documentation, Release 0.1.9

Returns a string description of the method.

internal_edge_density(**kwargs)
The internal density of the algorithms set.

𝑓(𝑆) =
𝑚𝑆

𝑛𝑆(𝑛𝑆1)/2

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()

link_modularity()
Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()

max_odf(**kwargs)
Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

𝑚𝑎𝑥𝑢∈𝑆
|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|

𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆 and 𝑑(𝑢) is the degree of 𝑢

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()

modularity_density()
The modularity density is one of several propositions that envisioned to palliate the resolution limit issue
of modularity based measures. The idea of this metric is to include the information about algorithms size
into the expected density of algorithms to avoid the negligence of small and dense communities. For each
algorithms 𝐶 in partition 𝑆, it uses the average modularity degree calculated by 𝑑(𝐶) = 𝑑𝑖𝑛𝑡(𝐶)𝑑𝑒𝑥𝑡(𝐶)

12 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

where 𝑑𝑖𝑛𝑡(𝐶) and 𝑑𝑒𝑥𝑡(𝐶) are the average internal and external degrees of 𝐶 respectively to evaluate the
fitness of 𝐶 in its network. Finally, the modularity density can be calculated as follows:

𝑄(𝑆) =
∑︁
𝐶∈𝑆

1

𝑛𝐶
(
∑︁
𝑖∈𝐶

𝑘𝑖𝑛𝑡𝑖𝐶 −
∑︁
𝑖∈𝐶

𝑘𝑜𝑢𝑡𝑖𝐶)

where 𝑛𝐶 is the number of nodes in C, 𝑘𝑖𝑛𝑡𝑖𝐶 is the degree of node i within 𝐶 and 𝑘𝑜𝑢𝑡𝑖𝐶 is the deree of node
i outside 𝐶.

Returns the modularity density score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()

References

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function for algorithms
detection. Physical review E, 77(3), 036109.

newman_girvan_modularity()
Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if
distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph
under consideration. In other words, the modularity compares the real network structure with a corre-
sponding one where nodes are connected without any preference about their neighbors.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆 − (2𝑚𝑆 + 𝑙𝑆)
2

4𝑚
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Newman-Girvan modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()

References

Newman, M.E.J. & Girvan, M. Finding and evaluating algorithms structure in networks. Physical
Review E 69, 26113(2004).

nf1(clustering)
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works
on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

1.5. Reference 13

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of Com-
plex Networks. 5(6), 893-912.

normalized_cut(**kwargs)
Normalized variant of the Cut-Ratio

: 𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆
+

𝑐𝑆
2(𝑚𝑚𝑆) + 𝑐𝑆

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms internal edges and 𝑐𝑆 is the number
of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale
the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual infor-
mation is normalized by sqrt(H(labels_true) * H(labels_pred))

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

14 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)

Reference

1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for evaluating
abstractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg,
PA, USA, 10-18.

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by Lancichinetti et al.

Parameters clustering – NodeClustering object

Returns onmi score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_
→˓communities)

Reference

1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3), 033015.

overlapping_normalized_mutual_information_MGH(clustering, normalization=’max’)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref.
for more details.

Parameters

• clustering – NodeClustering object

• normalization – one of “max” or “LFK”. Default “max” (corresponds to the main
method described in the article)

Returns onmi score

Example

1.5. Reference 15

CDlib Documentation, Release 0.1.9

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_
→˓communities,leiden_communities)
:Reference:

1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlap-
ping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago

significance()
Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

size(**kwargs)
Size is the number of nodes in the community

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example:

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()

surprise()
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge
randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a
random realization, the better the quality of the algorithms structure.

Returns the surprise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()

16 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>

triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∈ 𝐸, (𝑣, 𝑤) ∈ 𝐸} ≠ ∅}|

𝑛𝑆

where 𝑛𝑆 is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information(clustering)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

1. Meila, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate
Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

z_modularity()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The
concept of this version is based on an observation that the difference between the fraction of edges inside

1.5. Reference 17

CDlib Documentation, Release 0.1.9

communities and the expected number of such edges in a null model should not be considered as the only
contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()

References

Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for algorithms detection in net-
works. PloS one 11.1 (2016): e0147805.

Methods

Data transformation and IO

NodeClustering.to_json() Generate a JSON representation of the algorithms object
NodeClustering.to_node_community_map() Generate a <node, list(communities)> representation of

the current clustering

Evaluating Node Clustering

NodeClustering.link_modularity() Quality function designed for directed graphs with over-
lapping communities.

NodeClustering.normalized_cut(**kwargs) Normalized variant of the Cut-Ratio
NodeClustering.internal_edge_density(**kwargs)The internal density of the algorithms set.
NodeClustering.average_internal_degree(**kwargs)The average internal degree of the algorithms set.
NodeClustering.fraction_over_median_degree(. . .)Fraction of algorithms nodes of having internal degree

higher than the median degree value.
NodeClustering.expansion(**kwargs) Number of edges per algorithms node that point outside

the cluster.
NodeClustering.cut_ratio(**kwargs) Fraction of existing edges (out of all possible edges)

leaving the algorithms.
NodeClustering.edges_inside(**kwargs) Number of edges internal to the algorithms.
NodeClustering.conductance(**kwargs) Fraction of total edge volume that points outside the al-

gorithms.
NodeClustering.max_odf(**kwargs) Maximum fraction of edges of a node of a algorithms

that point outside the algorithms itself.
NodeClustering.avg_odf(**kwargs) Average fraction of edges of a node of a algorithms that

point outside the algorithms itself.
NodeClustering.flake_odf(**kwargs) Fraction of nodes in S that have fewer edges pointing

inside than to the outside of the algorithms.
NodeClustering.triangle_participation_ratio(. . .)Fraction of algorithms nodes that belong to a triad.

Continued on next page

18 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Table 2 – continued from previous page
NodeClustering.newman_girvan_modularity()Difference the fraction of intra algorithms edges of a

partition with the expected number of such edges if dis-
tributed according to a null model.

NodeClustering.erdos_renyi_modularity() Erdos-Renyi modularity is a variation of the Newman-
Girvan one.

NodeClustering.modularity_density() The modularity density is one of several propositions
that envisioned to palliate the resolution limit issue of
modularity based measures.

NodeClustering.z_modularity() Z-modularity is another variant of the standard modu-
larity proposed to avoid the resolution limit.

NodeClustering.surprise() Surprise is statistical approach proposes a quality metric
assuming that edges between vertices emerge randomly
according to a hyper-geometric distribution.

NodeClustering.significance() Significance estimates how likely a partition of dense
communities appear in a random graph.

Comparing Node Clusterings

NodeClustering.normalized_mutual_information(. . .)Normalized Mutual Information between two cluster-
ings.

NodeClustering.overlapping_normalized_mutual_information_MGH(. . .)Overlapping Normalized Mutual Information between
two clusterings.

NodeClustering.overlapping_normalized_mutual_information_LFK(. . .)Overlapping Normalized Mutual Information between
two clusterings.

NodeClustering.omega(clustering) Index of resemblance for overlapping, complete cover-
age, network clusterings.

NodeClustering.f1(clustering) Compute the average F1 score of the optimal algorithms
matches among the partitions in input.

NodeClustering.nf1(clustering) Compute the Normalized F1 score of the optimal algo-
rithms matches among the partitions in input.

NodeClustering.adjusted_rand_index(clustering)Rand index adjusted for chance.
NodeClustering.adjusted_mutual_information(. . .)Adjusted Mutual Information between two clusterings.
NodeClustering.variation_of_information(. . .)Variation of Information among two nodes partitions.

Fuzzy Node Clustering

Overview

class FuzzyNodeClustering(communities, node_allocation, graph, method_name,
method_parameters=None, overlap=False)

Fuzzy Node Communities representation.

Parameters

• communities – list of communities

• node_allocation – dictionary specifying for each node the allocation of probability
toward the communities it is placed in

• graph – a networkx/igraph object

• method_name – community discovery algorithm name

1.5. Reference 19

CDlib Documentation, Release 0.1.9

• method_parameters – configuration for the community discovery algorithm used

• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)
Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the
AMI is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same
score value. This can be useful to measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted
Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)

Reference

1. Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct), 2837-2854.

adjusted_rand_index(clustering)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples
and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of
the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_index(a, b) == adjusted_rand_index(b, a)

Parameters clustering – NodeClustering object

20 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Returns ARI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)

Reference

1. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

average_internal_degree(**kwargs)
The average internal degree of the algorithms set.

𝑓(𝑆) =
2𝑚𝑆

𝑛𝑆

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()

avg_odf(**kwargs)
Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

1

𝑛𝑆

∑︁
𝑢∈𝑆

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|
𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>>
>>> communities = eva(g, alpha=alpha)
>>> pur = communities.purity()

conductance(**kwargs)
Fraction of total edge volume that points outside the algorithms.

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆

1.5. Reference 21

CDlib Documentation, Release 0.1.9

where 𝑐𝑆 is the number of algorithms nodes and, 𝑚𝑆 is the number of algorithms edges

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()

cut_ratio(**kwargs)
Fraction of existing edges (out of all possible edges) leaving the algorithms.

..math:: f(S) = frac{c_S}{n_S (n n_S)}

where 𝑐𝑆 is the number of algorithms nodes and, 𝑛𝑆 is the number of edges on the algorithms boundary

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()

edges_inside(**kwargs)
Number of edges internal to the algorithms.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()

erdos_renyi_modularity()
Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network
are connected randomly with a constant probability 𝑝.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆
𝑚𝑛𝑆(𝑛𝑆1)

𝑛(𝑛1)
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

22 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

expansion(**kwargs)
Number of edges per algorithms node that point outside the cluster.

𝑓(𝑆) =
𝑐𝑆
𝑛𝑆

where 𝑛𝑆 is the number of edges on the algorithms boundary, 𝑐𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝑆}| < 𝑑(𝑢)/2}|

𝑛𝑆

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

1.5. Reference 23

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()

fraction_over_median_degree(**kwargs)
Fraction of algorithms nodes of having internal degree higher than the median degree value.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) : 𝑣 ∈ 𝑆}| > 𝑑𝑚}|

𝑛𝑆

where 𝑑𝑚 is the internal degree median value

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()

get_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• parameters_to_display – parameters to display. By default, all float parameters.

• precision – precision used to plot parameters. default: 3

Returns a string description of the method.

internal_edge_density(**kwargs)
The internal density of the algorithms set.

𝑓(𝑆) =
𝑚𝑆

𝑛𝑆(𝑛𝑆1)/2

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()

24 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

link_modularity()
Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()

max_odf(**kwargs)
Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

𝑚𝑎𝑥𝑢∈𝑆
|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|

𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆 and 𝑑(𝑢) is the degree of 𝑢

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()

modularity_density()
The modularity density is one of several propositions that envisioned to palliate the resolution limit issue
of modularity based measures. The idea of this metric is to include the information about algorithms size
into the expected density of algorithms to avoid the negligence of small and dense communities. For each
algorithms 𝐶 in partition 𝑆, it uses the average modularity degree calculated by 𝑑(𝐶) = 𝑑𝑖𝑛𝑡(𝐶)𝑑𝑒𝑥𝑡(𝐶)

where 𝑑𝑖𝑛𝑡(𝐶) and 𝑑𝑒𝑥𝑡(𝐶) are the average internal and external degrees of 𝐶 respectively to evaluate the
fitness of 𝐶 in its network. Finally, the modularity density can be calculated as follows:

𝑄(𝑆) =
∑︁
𝐶∈𝑆

1

𝑛𝐶
(
∑︁
𝑖∈𝐶

𝑘𝑖𝑛𝑡𝑖𝐶 −
∑︁
𝑖∈𝐶

𝑘𝑜𝑢𝑡𝑖𝐶)

where 𝑛𝐶 is the number of nodes in C, 𝑘𝑖𝑛𝑡𝑖𝐶 is the degree of node i within 𝐶 and 𝑘𝑜𝑢𝑡𝑖𝐶 is the deree of node
i outside 𝐶.

Returns the modularity density score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()

References

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function for algorithms
detection. Physical review E, 77(3), 036109.

1.5. Reference 25

CDlib Documentation, Release 0.1.9

newman_girvan_modularity()
Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if
distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph
under consideration. In other words, the modularity compares the real network structure with a corre-
sponding one where nodes are connected without any preference about their neighbors.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆 − (2𝑚𝑆 + 𝑙𝑆)
2

4𝑚
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Newman-Girvan modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()

References

Newman, M.E.J. & Girvan, M. Finding and evaluating algorithms structure in networks. Physical
Review E 69, 26113(2004).

nf1(clustering)
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works
on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of Com-
plex Networks. 5(6), 893-912.

normalized_cut(**kwargs)
Normalized variant of the Cut-Ratio

: 𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆
+

𝑐𝑆
2(𝑚𝑚𝑆) + 𝑐𝑆

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms internal edges and 𝑐𝑆 is the number
of algorithms nodes.

26 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale
the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual infor-
mation is normalized by sqrt(H(labels_true) * H(labels_pred))

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)

Reference

1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for evaluating
abstractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg,
PA, USA, 10-18.

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by Lancichinetti et al.

Parameters clustering – NodeClustering object

1.5. Reference 27

CDlib Documentation, Release 0.1.9

Returns onmi score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_
→˓communities)

Reference

1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3), 033015.

overlapping_normalized_mutual_information_MGH(clustering, normalization=’max’)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref.
for more details.

Parameters

• clustering – NodeClustering object

• normalization – one of “max” or “LFK”. Default “max” (corresponds to the main
method described in the article)

Returns onmi score

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_
→˓communities,leiden_communities)
:Reference:

1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlap-
ping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago

significance()
Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()

References

28 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

size(**kwargs)
Size is the number of nodes in the community

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example:

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()

surprise()
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge
randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a
random realization, the better the quality of the algorithms structure.

Returns the surprise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>

triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∈ 𝐸, (𝑣, 𝑤) ∈ 𝐸} ≠ ∅}|

𝑛𝑆

where 𝑛𝑆 is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

1.5. Reference 29

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information(clustering)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

1. Meila, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate
Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

z_modularity()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The
concept of this version is based on an observation that the difference between the fraction of edges inside
communities and the expected number of such edges in a null model should not be considered as the only
contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()

References

Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for algorithms detection in net-
works. PloS one 11.1 (2016): e0147805.

Methods

Data transformation and IO

FuzzyNodeClustering.to_json() Generate a JSON representation of the algorithms object
Continued on next page

30 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Table 4 – continued from previous page
FuzzyNodeClustering.
to_node_community_map()

Generate a <node, list(communities)> representation of
the current clustering

Evaluating Node Clustering

FuzzyNodeClustering.link_modularity() Quality function designed for directed graphs with over-
lapping communities.

FuzzyNodeClustering.
normalized_cut(**kwargs)

Normalized variant of the Cut-Ratio

FuzzyNodeClustering.
internal_edge_density(. . .)

The internal density of the algorithms set.

FuzzyNodeClustering.
average_internal_degree(. . .)

The average internal degree of the algorithms set.

FuzzyNodeClustering.
fraction_over_median_degree(. . .)

Fraction of algorithms nodes of having internal degree
higher than the median degree value.

FuzzyNodeClustering.expansion(**kwargs) Number of edges per algorithms node that point outside
the cluster.

FuzzyNodeClustering.cut_ratio(**kwargs) Fraction of existing edges (out of all possible edges)
leaving the algorithms.

FuzzyNodeClustering.
edges_inside(**kwargs)

Number of edges internal to the algorithms.

FuzzyNodeClustering.
conductance(**kwargs)

Fraction of total edge volume that points outside the al-
gorithms.

FuzzyNodeClustering.max_odf(**kwargs) Maximum fraction of edges of a node of a algorithms
that point outside the algorithms itself.

FuzzyNodeClustering.avg_odf(**kwargs) Average fraction of edges of a node of a algorithms that
point outside the algorithms itself.

FuzzyNodeClustering.flake_odf(**kwargs) Fraction of nodes in S that have fewer edges pointing
inside than to the outside of the algorithms.

FuzzyNodeClustering.
triangle_participation_ratio(. . .)

Fraction of algorithms nodes that belong to a triad.

FuzzyNodeClustering.
newman_girvan_modularity()

Difference the fraction of intra algorithms edges of a
partition with the expected number of such edges if dis-
tributed according to a null model.

FuzzyNodeClustering.
erdos_renyi_modularity()

Erdos-Renyi modularity is a variation of the Newman-
Girvan one.

FuzzyNodeClustering.
modularity_density()

The modularity density is one of several propositions
that envisioned to palliate the resolution limit issue of
modularity based measures.

FuzzyNodeClustering.z_modularity() Z-modularity is another variant of the standard modu-
larity proposed to avoid the resolution limit.

FuzzyNodeClustering.surprise() Surprise is statistical approach proposes a quality metric
assuming that edges between vertices emerge randomly
according to a hyper-geometric distribution.

FuzzyNodeClustering.significance() Significance estimates how likely a partition of dense
communities appear in a random graph.

Attributed Node Clustering

1.5. Reference 31

CDlib Documentation, Release 0.1.9

Overview

class AttrNodeClustering(communities, graph, method_name, coms_labels=None,
method_parameters=None, overlap=False)

Attribute Node Communities representation.

Parameters

• communities – list of communities

• graph – a networkx/igraph object

• method_name – community discovery algorithm name

• coms_labels – dictionary specifying for each community the frequency of the attribute
values

• method_parameters – configuration for the community discovery algorithm used

• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)
Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the
AMI is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same
score value. This can be useful to measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted
Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)

Reference

1. Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct), 2837-2854.

adjusted_rand_index(clustering)
Rand index adjusted for chance.

32 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples
and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of
the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_index(a, b) == adjusted_rand_index(b, a)

Parameters clustering – NodeClustering object

Returns ARI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)

Reference

1. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

average_internal_degree(**kwargs)
The average internal degree of the algorithms set.

𝑓(𝑆) =
2𝑚𝑆

𝑛𝑆

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()

avg_odf(**kwargs)
Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

1

𝑛𝑆

∑︁
𝑢∈𝑆

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|
𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

1.5. Reference 33

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>>
>>> communities = eva(g, alpha=alpha)
>>> pur = communities.purity()

conductance(**kwargs)
Fraction of total edge volume that points outside the algorithms.

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆

where 𝑐𝑆 is the number of algorithms nodes and, 𝑚𝑆 is the number of algorithms edges

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()

cut_ratio(**kwargs)
Fraction of existing edges (out of all possible edges) leaving the algorithms.

..math:: f(S) = frac{c_S}{n_S (n n_S)}

where 𝑐𝑆 is the number of algorithms nodes and, 𝑛𝑆 is the number of edges on the algorithms boundary

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()

edges_inside(**kwargs)
Number of edges internal to the algorithms.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

34 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()

erdos_renyi_modularity()
Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network
are connected randomly with a constant probability 𝑝.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆
𝑚𝑛𝑆(𝑛𝑆1)

𝑛(𝑛1)
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

expansion(**kwargs)
Number of edges per algorithms node that point outside the cluster.

𝑓(𝑆) =
𝑐𝑆
𝑛𝑆

where 𝑛𝑆 is the number of edges on the algorithms boundary, 𝑐𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example

1.5. Reference 35

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝑆}| < 𝑑(𝑢)/2}|

𝑛𝑆

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()

fraction_over_median_degree(**kwargs)
Fraction of algorithms nodes of having internal degree higher than the median degree value.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) : 𝑣 ∈ 𝑆}| > 𝑑𝑚}|

𝑛𝑆

where 𝑑𝑚 is the internal degree median value

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()

get_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• parameters_to_display – parameters to display. By default, all float parameters.

• precision – precision used to plot parameters. default: 3

36 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Returns a string description of the method.

internal_edge_density(**kwargs)
The internal density of the algorithms set.

𝑓(𝑆) =
𝑚𝑆

𝑛𝑆(𝑛𝑆1)/2

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()

link_modularity()
Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()

max_odf(**kwargs)
Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

𝑚𝑎𝑥𝑢∈𝑆
|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|

𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆 and 𝑑(𝑢) is the degree of 𝑢

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()

modularity_density()
The modularity density is one of several propositions that envisioned to palliate the resolution limit issue
of modularity based measures. The idea of this metric is to include the information about algorithms size
into the expected density of algorithms to avoid the negligence of small and dense communities. For each
algorithms 𝐶 in partition 𝑆, it uses the average modularity degree calculated by 𝑑(𝐶) = 𝑑𝑖𝑛𝑡(𝐶)𝑑𝑒𝑥𝑡(𝐶)

1.5. Reference 37

CDlib Documentation, Release 0.1.9

where 𝑑𝑖𝑛𝑡(𝐶) and 𝑑𝑒𝑥𝑡(𝐶) are the average internal and external degrees of 𝐶 respectively to evaluate the
fitness of 𝐶 in its network. Finally, the modularity density can be calculated as follows:

𝑄(𝑆) =
∑︁
𝐶∈𝑆

1

𝑛𝐶
(
∑︁
𝑖∈𝐶

𝑘𝑖𝑛𝑡𝑖𝐶 −
∑︁
𝑖∈𝐶

𝑘𝑜𝑢𝑡𝑖𝐶)

where 𝑛𝐶 is the number of nodes in C, 𝑘𝑖𝑛𝑡𝑖𝐶 is the degree of node i within 𝐶 and 𝑘𝑜𝑢𝑡𝑖𝐶 is the deree of node
i outside 𝐶.

Returns the modularity density score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()

References

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function for algorithms
detection. Physical review E, 77(3), 036109.

newman_girvan_modularity()
Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if
distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph
under consideration. In other words, the modularity compares the real network structure with a corre-
sponding one where nodes are connected without any preference about their neighbors.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆 − (2𝑚𝑆 + 𝑙𝑆)
2

4𝑚
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Newman-Girvan modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()

References

Newman, M.E.J. & Girvan, M. Finding and evaluating algorithms structure in networks. Physical
Review E 69, 26113(2004).

nf1(clustering)
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works
on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

38 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of Com-
plex Networks. 5(6), 893-912.

normalized_cut(**kwargs)
Normalized variant of the Cut-Ratio

: 𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆
+

𝑐𝑆
2(𝑚𝑚𝑆) + 𝑐𝑆

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms internal edges and 𝑐𝑆 is the number
of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale
the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual infor-
mation is normalized by sqrt(H(labels_true) * H(labels_pred))

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

1.5. Reference 39

CDlib Documentation, Release 0.1.9

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)

Reference

1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for evaluating
abstractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg,
PA, USA, 10-18.

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by Lancichinetti et al.

Parameters clustering – NodeClustering object

Returns onmi score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_
→˓communities)

Reference

1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3), 033015.

overlapping_normalized_mutual_information_MGH(clustering, normalization=’max’)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref.
for more details.

Parameters

• clustering – NodeClustering object

• normalization – one of “max” or “LFK”. Default “max” (corresponds to the main
method described in the article)

Returns onmi score

Example

40 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_
→˓communities,leiden_communities)
:Reference:

1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlap-
ping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago

purity()
Purity is the product of the frequencies of the most frequent labels carried by the nodes within the commu-
nities :return: FitnessResult object

significance()
Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

size(**kwargs)
Size is the number of nodes in the community

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example:

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()

surprise()
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge
randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a
random realization, the better the quality of the algorithms structure.

Returns the surprise score

Example

1.5. Reference 41

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>

triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∈ 𝐸, (𝑣, 𝑤) ∈ 𝐸} ≠ ∅}|

𝑛𝑆

where 𝑛𝑆 is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information(clustering)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

42 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

1. Meila, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate
Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

z_modularity()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The
concept of this version is based on an observation that the difference between the fraction of edges inside
communities and the expected number of such edges in a null model should not be considered as the only
contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()

References

Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for algorithms detection in net-
works. PloS one 11.1 (2016): e0147805.

Methods

Evaluating Node Clustering

AttrNodeClustering.purity() Purity is the product of the frequencies of the most fre-
quent labels carried by the nodes within the communi-
ties :return: FitnessResult object

Biparite Node Clustering

Overview

class BiNodeClustering(left_communities, right_communities, graph, method_name,
method_parameters=None, overlap=False)

Bipartite Node Communities representation.

Parameters

• left_communities – list of left communities

• right_communities – list of right communities

• graph – a networkx/igraph object

• method_name – community discovery algorithm name

• method_parameters – configuration for the community discovery algorithm used

• overlap – boolean, whether the partition is overlapping or not

adjusted_mutual_information(clustering)
Adjusted Mutual Information between two clusterings.

1.5. Reference 43

CDlib Documentation, Release 0.1.9

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the
AMI is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same
score value. This can be useful to measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted
Rand Index.

Parameters clustering – NodeClustering object

Returns AMI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_mutual_information(leiden_communities)

Reference

1. Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct), 2837-2854.

adjusted_rand_index(clustering)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples
and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of
the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_index(a, b) == adjusted_rand_index(b, a)

Parameters clustering – NodeClustering object

Returns ARI score

Example

44 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.adjusted_rand_index(leiden_communities)

Reference

1. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

average_internal_degree(**kwargs)
The average internal degree of the algorithms set.

𝑓(𝑆) =
2𝑚𝑆

𝑛𝑆

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.average_internal_degree()

avg_odf(**kwargs)
Average fraction of edges of a node of a algorithms that point outside the algorithms itself.

1

𝑛𝑆

∑︁
𝑢∈𝑆

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|
𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>>
>>> communities = eva(g, alpha=alpha)
>>> pur = communities.purity()

conductance(**kwargs)
Fraction of total edge volume that points outside the algorithms.

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆

where 𝑐𝑆 is the number of algorithms nodes and, 𝑚𝑆 is the number of algorithms edges

1.5. Reference 45

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.conductance()

cut_ratio(**kwargs)
Fraction of existing edges (out of all possible edges) leaving the algorithms.

..math:: f(S) = frac{c_S}{n_S (n n_S)}

where 𝑐𝑆 is the number of algorithms nodes and, 𝑛𝑆 is the number of edges on the algorithms boundary

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.cut_ratio()

edges_inside(**kwargs)
Number of edges internal to the algorithms.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.edges_inside()

erdos_renyi_modularity()
Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network
are connected randomly with a constant probability 𝑝.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆
𝑚𝑛𝑆(𝑛𝑆1)

𝑛(𝑛1)
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Erdos-Renyi modularity score

Example

46 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.erdos_renyi_modularity()

References

Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

expansion(**kwargs)
Number of edges per algorithms node that point outside the cluster.

𝑓(𝑆) =
𝑐𝑆
𝑛𝑆

where 𝑛𝑆 is the number of edges on the algorithms boundary, 𝑐𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.expansion()

f1(clustering)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns F1 score (harmonic mean of precision and recall)

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.f1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

flake_odf(**kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the algorithms.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝑆}| < 𝑑(𝑢)/2}|

𝑛𝑆

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of algorithms
nodes.

1.5. Reference 47

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.flake_odf()

fraction_over_median_degree(**kwargs)
Fraction of algorithms nodes of having internal degree higher than the median degree value.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) : 𝑣 ∈ 𝑆}| > 𝑑𝑚}|

𝑛𝑆

where 𝑑𝑚 is the internal degree median value

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.fraction_over_median_degree()

get_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• parameters_to_display – parameters to display. By default, all float parameters.

• precision – precision used to plot parameters. default: 3

Returns a string description of the method.

internal_edge_density(**kwargs)
The internal density of the algorithms set.

𝑓(𝑆) =
𝑚𝑆

𝑛𝑆(𝑛𝑆1)/2

where 𝑚𝑆 is the number of algorithms internal edges and 𝑛𝑆 is the number of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.internal_edge_density()

48 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

link_modularity()
Quality function designed for directed graphs with overlapping communities.

Returns the link modularity score

Example

>>> from cdlib import evaluation
>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.link_modularity()

max_odf(**kwargs)
Maximum fraction of edges of a node of a algorithms that point outside the algorithms itself.

𝑚𝑎𝑥𝑢∈𝑆
|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|

𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆 and 𝑑(𝑢) is the degree of 𝑢

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.max_odf()

modularity_density()
The modularity density is one of several propositions that envisioned to palliate the resolution limit issue
of modularity based measures. The idea of this metric is to include the information about algorithms size
into the expected density of algorithms to avoid the negligence of small and dense communities. For each
algorithms 𝐶 in partition 𝑆, it uses the average modularity degree calculated by 𝑑(𝐶) = 𝑑𝑖𝑛𝑡(𝐶)𝑑𝑒𝑥𝑡(𝐶)

where 𝑑𝑖𝑛𝑡(𝐶) and 𝑑𝑒𝑥𝑡(𝐶) are the average internal and external degrees of 𝐶 respectively to evaluate the
fitness of 𝐶 in its network. Finally, the modularity density can be calculated as follows:

𝑄(𝑆) =
∑︁
𝐶∈𝑆

1

𝑛𝐶
(
∑︁
𝑖∈𝐶

𝑘𝑖𝑛𝑡𝑖𝐶 −
∑︁
𝑖∈𝐶

𝑘𝑜𝑢𝑡𝑖𝐶)

where 𝑛𝐶 is the number of nodes in C, 𝑘𝑖𝑛𝑡𝑖𝐶 is the degree of node i within 𝐶 and 𝑘𝑜𝑢𝑡𝑖𝐶 is the deree of node
i outside 𝐶.

Returns the modularity density score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.modularity_density()

References

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function for algorithms
detection. Physical review E, 77(3), 036109.

1.5. Reference 49

CDlib Documentation, Release 0.1.9

newman_girvan_modularity()
Difference the fraction of intra algorithms edges of a partition with the expected number of such edges if
distributed according to a null model.

In the standard version of modularity, the null model preserves the expected degree sequence of the graph
under consideration. In other words, the modularity compares the real network structure with a corre-
sponding one where nodes are connected without any preference about their neighbors.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆 − (2𝑚𝑆 + 𝑙𝑆)
2

4𝑚
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms edges, 𝑙𝑆 is the number of edges
from nodes in S to nodes outside S.

Returns the Newman-Girvan modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.newman_girvan_modularity()

References

Newman, M.E.J. & Girvan, M. Finding and evaluating algorithms structure in networks. Physical
Review E 69, 26113(2004).

nf1(clustering)
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works
on overlapping/non-overlapping complete/partial coverage partitions.

Parameters clustering – NodeClustering object

Returns MatchingResult instance

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.nf1(leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of Com-
plex Networks. 5(6), 893-912.

normalized_cut(**kwargs)
Normalized variant of the Cut-Ratio

: 𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆
+

𝑐𝑆
2(𝑚𝑚𝑆) + 𝑐𝑆

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of algorithms internal edges and 𝑐𝑆 is the number
of algorithms nodes.

50 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.normalized_cut()

normalized_mutual_information(clustering)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale
the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual infor-
mation is normalized by sqrt(H(labels_true) * H(labels_pred))

Parameters clustering – NodeClustering object

Returns normalized mutual information score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.normalized_mutual_information(leiden_communities)

omega(clustering)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters clustering – NodeClustering object

Returns omega index

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.omega(leiden_communities)

Reference

1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for evaluating
abstractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg,
PA, USA, 10-18.

overlapping_normalized_mutual_information_LFK(clustering)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by Lancichinetti et al.

Parameters clustering – NodeClustering object

1.5. Reference 51

CDlib Documentation, Release 0.1.9

Returns onmi score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.overlapping_normalized_mutual_information_LFK(leiden_
→˓communities)

Reference

1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3), 033015.

overlapping_normalized_mutual_information_MGH(clustering, normalization=’max’)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is
the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref.
for more details.

Parameters

• clustering – NodeClustering object

• normalization – one of “max” or “LFK”. Default “max” (corresponds to the main
method described in the article)

Returns onmi score

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_
→˓communities,leiden_communities)
:Reference:

1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlap-
ping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago

significance()
Significance estimates how likely a partition of dense communities appear in a random graph.

Returns the significance score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.significance()

References

52 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

size(**kwargs)
Size is the number of nodes in the community

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example:

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.size()

surprise()
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge
randomly according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a
random realization, the better the quality of the algorithms structure.

Returns the surprise score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.surprise()

References

Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical sur-
prise. Physical Review E, 92(2), 022816.

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

to_node_community_map()
Generate a <node, list(communities)> representation of the current clustering

Returns dict of the form <node, list(communities)>

triangle_participation_ratio(**kwargs)
Fraction of algorithms nodes that belong to a triad.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∈ 𝐸, (𝑣, 𝑤) ∈ 𝐸} ≠ ∅}|

𝑛𝑆

where 𝑛𝑆 is the set of algorithms nodes.

Parameters summary – (optional, default True) if True, an overall summary is returned for the
partition (min, max, avg, std); if False a list of community-wise score

Returns a FitnessResult object/a list of community-wise score

Example

1.5. Reference 53

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.triangle_participation_ratio()

variation_of_information(clustering)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters clustering – NodeClustering object

Returns VI score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> mod = communities.variation_of_information(leiden_communities)

Reference

1. Meila, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate
Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

z_modularity()
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The
concept of this version is based on an observation that the difference between the fraction of edges inside
communities and the expected number of such edges in a null model should not be considered as the only
contribution to the final quality of algorithms structure.

Returns the z-modularity score

Example

>>> from cdlib.algorithms import louvain
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = communities.z_modularity()

References

Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for algorithms detection in net-
works. PloS one 11.1 (2016): e0147805.

Edge Clustering

Overview

class EdgeClustering(communities, graph, method_name, method_parameters=None, over-
lap=False)

Edge Clustering representation.

54 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Parameters

• communities – list of communities

• graph – a networkx/igraph object

• method_name – community discovery algorithm name

• method_parameters – configuration for the community discovery algorithm used

• overlap – boolean, whether the partition is overlapping or not

get_description(parameters_to_display=None, precision=3)
Return a description of the clustering, with the name of the method and its numeric parameters.

Parameters

• parameters_to_display – parameters to display. By default, all float parameters.

• precision – precision used to plot parameters. default: 3

Returns a string description of the method.

to_edge_community_map()
Generate a <edge, list(communities)> representation of the current clustering

Returns dict of the form <edge, list(communities)>

to_json()
Generate a JSON representation of the algorithms object

Returns a JSON formatted string representing the object

Methods

Data transformation and IO

EdgeClustering.to_json() Generate a JSON representation of the algorithms object
EdgeClustering.to_edge_community_map() Generate a <edge, list(communities)> representation of

the current clustering

1.5.2 Community Discovery algorithms

CDlib collects implementations of several Community Discovery algorithms.

To maintain the library organization as clean and resilient as possible the approaches are grouped following a simple,
two level, rationale:

1. The first distinction is made on the object clustered, thus separating Node Clustering and Edge Clustering
algorithms;

2. The second distinction is made on the specific kind of partition each one of them generates: Crisp, Overlapping
or Fuzzy.

This documentation follows the same rationale.

Node Clustering

Algorithms falling in this category generate communities composed by nodes. The communities can represent neat,
crisp, partition as well as overlapping or even fuzzy ones.

1.5. Reference 55

CDlib Documentation, Release 0.1.9

Crisp Communities

A clustering is said to be a partition if each node belongs to one and only one community. Methods in this subclass
return as result a NodeClustering object instance.

agdl(g_original, number_communities, . . .) AGDL is a graph-based agglomerative algorithm, for
clustering high-dimensional data.

aslpaw(g_original) ASLPAw can be used for disjoint and overlapping com-
munity detection and works on weighted/unweighted
and directed/undirected networks.

async_fluid(g_original, k) Fluid Communities (FluidC) is based on the simple idea
of fluids (i.e., communities) interacting in an environ-
ment (i.e., a non-complete graph), expanding and con-
tracting.

cpm(g_original[, initial_membership, . . .]) CPM is a model where the quality function to optimize
is:

chinesewhispers(g_original[, weighting, . . .]) Fuzzy graph clustering that (i) creates an intermedi-
ate representation of the input graph, which reflects the
“ambiguity” of its nodes, and (ii) uses hard clustering
to discover crisp clusters in such “disambiguated” inter-
mediate graph.

der(g_original[, walk_len, threshold, . . .]) DER is a Diffusion Entropy Reducer graph clustering
algorithm.

edmot(g_original[, component_count, cutoff]) The algorithm first creates the graph of higher order mo-
tifs.

eigenvector(g_original) Newman’s leading eigenvector method for detecting
community structure based on modularity.

em(g_original, k) EM is based on based on a mixture model.
gdmp2(g_original[, min_threshold]) Gdmp2 is a method for identifying a set of dense sub-

graphs of a given sparse graph.
girvan_newman(g_original, level) The Girvan–Newman algorithm detects communities by

progressively removing edges from the original graph.
greedy_modularity(g_original[, weight]) The CNM algorithm uses the modularity to find the

communities strcutures.
infomap(g_original) Infomap is based on ideas of information theory.
label_propagation(g_original) The Label Propagation algorithm (LPA) detects com-

munities using network structure alone.
leiden(g_original[, initial_membership, weights]) The Leiden algorithm is an improvement of the Louvain

algorithm.
louvain(g_original[, weight, resolution, . . .]) Louvain maximizes a modularity score for each com-

munity.
markov_clustering(g_original[, expansion, . . .]) The Markov clustering algorithm (MCL) is based on

simulation of (stochastic) flow in graphs.
rber_pots(g_original[, initial_membership, . . .]) rber_pots is a model where the quality function to opti-

mize is:
rb_pots(g_original[, initial_membership, . . .]) Rb_pots is a model where the quality function to opti-

mize is:
scan(g_original, epsilon, mu) SCAN (Structural Clustering Algorithm for Networks)

is an algorithm which detects clusters, hubs and outliers
in networks.

significance_communities(g_original[, . . .]) Significance_communities is a model where the quality
function to optimize is:

Continued on next page

56 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Table 8 – continued from previous page
spinglass(g_original) Spinglass relies on an analogy between a very popular

statistical mechanic model called Potts spin glass, and
the community structure.

surprise_communities(g_original[, . . .]) Surprise_communities is a model where the quality
function to optimize is:

walktrap(g_original) walktrap is an approach based on random walks.
sbm_dl(g_original[, B_min, B_max, deg_corr]) Efficient Monte Carlo and greedy heuristic for the infer-

ence of stochastic block models.
sbm_dl_nested(g_original[, B_min, B_max, . . .]) Efficient Monte Carlo and greedy heuristic for the infer-

ence of stochastic block models.

cdlib.algorithms.agdl

agdl(g_original, number_communities, number_neighbors, kc, a)
AGDL is a graph-based agglomerative algorithm, for clustering high-dimensional data. The algorithm uses the
indegree and outdegree to characterize the affinity between two clusters.

Parameters

• g_original – a networkx/igraph object

• number_communities – number of communities

• number_neighbors – Number of neighbors to use for KNN

• kc – size of the neighbor set for each cluster

• a – range(-infinity;+infinty). From the authors: a=np.arange(-2,2.1,0.5)

Returns

NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.agdl(g, number_communities=3, number_neighbors=3, kc=4, a=1)

References

Zhang, W., Wang, X., Zhao, D., & Tang, X. (2012, October). Graph degree linkage: Agglomerative clustering
on a directed graph. In European Conference on Computer Vision (pp. 428-441). Springer, Berlin, Heidelberg.

Note: Reference implementation: https://github.com/myungjoon/GDL

cdlib.algorithms.aslpaw

aslpaw(g_original)
ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and
directed/undirected networks. ASLPAw is adaptive with virtually no configuration parameters.

Parameters g_original – a networkx/igraph object

1.5. Reference 57

https://link.springer.com/chapter/10.1007/978-3-642-33718-5_31/
https://link.springer.com/chapter/10.1007/978-3-642-33718-5_31/
https://github.com/myungjoon/GDL

CDlib Documentation, Release 0.1.9

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.aslpaw(G)

References

Xie J, Szymanski B K, Liu X. Slpa: Uncovering Overlapping Communities in Social Networks via a Speaker-
Listener Interaction Dynamic Process[C]. IEEE 11th International Conference on Data Mining Workshops
(ICDMW). Ancouver, BC: IEEE, 2011: 344–349.

Note: Reference implementation: https://github.com/fsssosei/ASLPAw

cdlib.algorithms.async_fluid

async_fluid(g_original, k)
Fluid Communities (FluidC) is based on the simple idea of fluids (i.e., communities) interacting in an environ-
ment (i.e., a non-complete graph), expanding and contracting. It is propagation-based algorithm and it allows to
specify the number of desired communities (k) and it is asynchronous, where each vertex update is computed
using the latest partial state of the graph.

Parameters

• g_original – a networkx/igraph object

• k – Number of communities to search

Returns EdgeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.async_fluid(G,k=2)

References

Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesús Labarta, Ulises
Cortés, Toyotaro Suzumura T. Fluid Communities: A Competitive and Highly Scalable Community Detection
Algorithm.

cdlib.algorithms.cpm

cpm(g_original, initial_membership=None, weights=None, node_sizes=None, resolution_parameter=1)
CPM is a model where the quality function to optimize is:

𝑄 =
∑︁
𝑖𝑗

(𝐴𝑖𝑗 − 𝛾) 𝛿(𝜎𝑖, 𝜎𝑗)

58 Chapter 1. CDlib Dev Team

https://github.com/fsssosei/ASLPAw
https://link.springer.com/chapter/10.1007/978-3-319-72150-7_19/
https://link.springer.com/chapter/10.1007/978-3-319-72150-7_19/

CDlib Documentation, Release 0.1.9

where 𝐴 is the adjacency matrix, 𝜎𝑖 denotes the community of node 𝑖, 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise,
and, finally 𝛾 is a resolution parameter.

The internal density of communities

𝑝𝑐 =
𝑚𝑐(︀
𝑛𝑐

2

)︀ ≥ 𝛾

is higher than 𝛾, while the external density

𝑝𝑐𝑑 = 𝑚𝑐𝑑

𝑛𝑐𝑛𝑑
≤ 𝛾 is lower than 𝛾. In other words, choosing a particular 𝛾 corresponds to choosing to find

communities of a particular density, and as such defines communities. Finally, the definition of a community is
in a sense independent of the actual graph, which is not the case for any of the other methods.

Parameters

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or
an edge attribute. Deafault None

• node_sizes – list of int, or vertex attribute Sizes of nodes are necessary to know the size
of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific
cases this could be changed. Deafault None

• resolution_parameter – double >0 A parameter value controlling the coarseness of
the clustering. Higher resolutions lead to more communities, while lower resolutions lead
to fewer communities. Deafault 1

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.cpm(G)

References

Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detec-
tion. Physical Review E, 84(1), 016114. 10.1103/PhysRevE.84.016114

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.chinesewhispers

chinesewhispers(g_original, weighting=’top’, iterations=20, seed=None)
Fuzzy graph clustering that (i) creates an intermediate representation of the input graph, which reflects the “am-
biguity” of its nodes, and (ii) uses hard clustering to discover crisp clusters in such “disambiguated” intermediate
graph.

Parameters

• g_original –

1.5. Reference 59

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.016114/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.016114/
https://github.com/vtraag/leidenalg

CDlib Documentation, Release 0.1.9

• weighting – edge weighing schemas. Available modalities: [‘top’, ‘lin’, ‘log’]

• iterations – number of iterations

• seed – random seed

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.chinesewhispers(G)

References

Ustalov, D., Panchenko, A., Biemann, C., Ponzetto, S.P.: ‘Watset: Local-Global Graph Clustering with
Applications in Sense and Frame Induction.‘_ Computational Linguistics 45(3), 423–479 (2019)

Note: Reference implementation: https://github.com/nlpub/chinese-whispers-python

cdlib.algorithms.der

der(g_original, walk_len=3, threshold=1e-05, iter_bound=50)
DER is a Diffusion Entropy Reducer graph clustering algorithm. The algorithm uses random walks to embed
the graph in a space of measures, after which a modification of k-means in that space is applied. It creates the
walks, creates an initialization, runs the algorithm, and finally extracts the communities.

Parameters

• g_original – an undirected networkx graph object

• walk_len – length of the random walk, default 3

• threshold – threshold for stop criteria; if the likelihood_diff is less than threshold tha
algorithm stops, default 0.00001

• iter_bound – maximum number of iteration, default 50

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.der(G, 3, .00001, 50)

References

13. Kozdoba and S. Mannor, Community Detection via Measure Space Embedding, NIPS 2015

Note: Reference implementation: https://github.com/komarkdev/der_graph_clustering

60 Chapter 1. CDlib Dev Team

https://github.com/nlpub/chinese-whispers-python
https://papers.nips.cc/paper/5808-community-detection-via-measure-space-embedding/
https://github.com/komarkdev/der_graph_clustering

CDlib Documentation, Release 0.1.9

cdlib.algorithms.edmot

edmot(g_original, component_count=2, cutoff=10)
The algorithm first creates the graph of higher order motifs. This graph is clustered by the Louvain method.

Parameters

• g_original – a networkx/igraph object

• component_count – Number of extracted motif hypergraph components. Default is 2.

• cutoff – Motif edge cut-off value. Default is 10.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.edmot(G, max_loop=1000)

References

Li, Pei-Zhen, et al. “EdMot: An Edge Enhancement Approach for Motif-aware Community Detection.” Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.eigenvector

eigenvector(g_original)
Newman’s leading eigenvector method for detecting community structure based on modularity. This is the
proper internal of the recursive, divisive algorithm: each split is done by maximizing the modularity regarding
the original network.

Parameters g_original – a networkx/igraph object

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.eigenvector(G)

References

Newman, Mark EJ. Finding community structure in networks using the eigenvectors of matrices. Physical
review E 74.3 (2006): 036104.

1.5. Reference 61

https://karateclub.readthedocs.io/
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.74.036104/

CDlib Documentation, Release 0.1.9

cdlib.algorithms.em

em(g_original, k)
EM is based on based on a mixture model. The algorithm uses the expectation–maximization algorithm to detect
structure in networks.

Parameters

• g_original – a networkx/igraph object

• k – the number of desired communities

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.em(G, k=3)

References

Newman, Mark EJ, and Elizabeth A. Leicht. Mixture community and exploratory analysis in networks. Pro-
ceedings of the National Academy of Sciences 104.23 (2007): 9564-9569.

cdlib.algorithms.gdmp2

gdmp2(g_original, min_threshold=0.75)
Gdmp2 is a method for identifying a set of dense subgraphs of a given sparse graph. It is inspired by an effective
technique designed for a similar problem—matrix blocking, from a different discipline (solving linear systems).

Parameters

• g_original – a networkx/igraph object

• min_threshold – the minimum density threshold parameter to control the density of the
output subgraphs, default 0.75

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.gdmp2(G)

References

Chen, Jie, and Yousef Saad. Dense subgraph extraction with application to community detection. IEEE Trans-
actions on Knowledge and Data Engineering 24.7 (2012): 1216-1230.

Note: Reference implementation: https://github.com/imabhishekl/CSC591_Community_Detection

62 Chapter 1. CDlib Dev Team

https://www.pnas.org/content/104/23/9564/
https://ieeexplore.ieee.org/document/5677532/
https://github.com/imabhishekl/CSC591_Community_Detection

CDlib Documentation, Release 0.1.9

cdlib.algorithms.girvan_newman

girvan_newman(g_original, level)
The Girvan–Newman algorithm detects communities by progressively removing edges from the original graph.
The algorithm removes the “most valuable” edge, traditionally the edge with the highest betweenness centrality,
at each step. As the graph breaks down into pieces, the tightly knit community structure is exposed and the
result can be depicted as a dendrogram.

Parameters

• g_original – a networkx/igraph object

• level – the level where to cut the dendrogram

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.girvan_newman(G, level=3)

References

Girvan, Michelle, and Mark EJ Newman. Community structure in social and biological networks. Proceedings
of the national academy of sciences 99.12 (2002): 7821-7826.

cdlib.algorithms.greedy_modularity

greedy_modularity(g_original, weight=None)
The CNM algorithm uses the modularity to find the communities strcutures. At every step of the algorithm two
communities that contribute maximum positive value to global modularity are merged.

Parameters

• g_original – a networkx/igraph object

• weight – list of double, or edge attribute Weights of edges. Can be either an iterable or an
edge attribute. Deafault None

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.greedy_modularity(G)

References

Clauset, A., Newman, M. E., & Moore, C. Finding community structure in very large networks. Physical Review
E 70(6), 2004

1.5. Reference 63

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/
http://ece-research.unm.edu/ifis/papers/community-moore.pdf/

CDlib Documentation, Release 0.1.9

cdlib.algorithms.infomap

infomap(g_original)
Infomap is based on ideas of information theory. The algorithm uses the probability flow of random walks on
a network as a proxy for information flows in the real system and it decomposes the network into modules by
compressing a description of the probability flow.

Parameters g_original – a networkx/igraph object

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.infomap(G)

References

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure.
Proc Natl Acad SciUSA 105(4):1118–1123

Note: Reference implementation: https://pypi.org/project/infomap/

cdlib.algorithms.label_propagation

label_propagation(g_original)
The Label Propagation algorithm (LPA) detects communities using network structure alone. The algorithm
doesn’t require a pre-defined objective function or prior information about the communities. It works as follows:
-Every node is initialized with a unique label (an identifier) -These labels propagate through the network -
At every iteration of propagation, each node updates its label to the one that the maximum numbers of its
neighbours belongs to. Ties are broken uniformly and randomly. -LPA reaches convergence when each node
has the majority label of its neighbours.

Parameters g_original – a networkx/igraph object

Returns EdgeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.label_propagation(G)

References

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures
in large-scale networks. Physical review E, 76(3), 036106.

64 Chapter 1. CDlib Dev Team

https://www.pnas.org/content/105/4/1118/
https://pypi.org/project/infomap/
http://www.leonidzhukov.net/hse/2017/networks/papers/raghavan2007.pdf/
http://www.leonidzhukov.net/hse/2017/networks/papers/raghavan2007.pdf/

CDlib Documentation, Release 0.1.9

cdlib.algorithms.leiden

leiden(g_original, initial_membership=None, weights=None)
The Leiden algorithm is an improvement of the Louvain algorithm. The Leiden algorithm consists of three
phases: (1) local moving of nodes, (2) refinement of the partition (3) aggregation of the network based on the
refined partition, using the non-refined partition to create an initial partition for the aggregate network.

Parameters

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or
an edge attribute. Deafault None

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.leiden(G)

References

Traag, Vincent, Ludo Waltman, and Nees Jan van Eck. From Louvain to Leiden: guaranteeing well-connected
communities. arXiv preprint arXiv:1810.08473 (2018).

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.louvain

louvain(g_original, weight=’weight’, resolution=1.0, randomize=False)
Louvain maximizes a modularity score for each community. The algorithm optimises the modularity in two
elementary phases: (1) local moving of nodes; (2) aggregation of the network. In the local moving phase,
individual nodes are moved to the community that yields the largest increase in the quality function. In the
aggregation phase, an aggregate network is created based on the partition obtained in the local moving phase.
Each community in this partition becomes a node in the aggregate network. The two phases are repeated until
the quality function cannot be increased further.

Parameters

• g_original – a networkx/igraph object

• weight – str, optional the key in graph to use as weight. Default to ‘weight’

• resolution – double, optional Will change the size of the communities, default to 1.

• randomize – boolean, optional Will randomize the node evaluation order and the com-
munity evaluation order to get different partitions at each call, default False

Returns NodeClustering object

Example

1.5. Reference 65

https://arxiv.org/abs/1810.08473/
https://arxiv.org/abs/1810.08473/
https://github.com/vtraag/leidenalg

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.louvain(G, weight='weight', resolution=1., randomize=False)

References

Blondel, Vincent D., et al. Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment 2008.10 (2008): P10008.

Note: Reference implementation: https://github.com/taynaud/python-louvain

cdlib.algorithms.markov_clustering

markov_clustering(g_original, expansion=2, inflation=2, loop_value=1, iterations=100, prun-
ing_threshold=0.001, pruning_frequency=1, convergence_check_frequency=1)

The Markov clustering algorithm (MCL) is based on simulation of (stochastic) flow in graphs. The MCL algo-
rithm finds cluster structure in graphs by a mathematical bootstrapping procedure. The process deterministically
computes (the probabilities of) random walks through the graph, and uses two operators transforming one set
of probabilities into another. It does so using the language of stochastic matrices (also called Markov matrices)
which capture the mathematical concept of random walks on a graph. The MCL algorithm simulates random
walks within a graph by alternation of two operators called expansion and inflation.

Parameters

• g_original – a networkx/igraph object

• expansion – The cluster expansion factor

• inflation – The cluster inflation factor

• loop_value – Initialization value for self-loops

• iterations – Maximum number of iterations (actual number of iterations will be less if
convergence is reached)

• pruning_threshold – Threshold below which matrix elements will be set set to 0

• pruning_frequency – Perform pruning every ‘pruning_frequency’ iterations.

• convergence_check_frequency – Perform the check for convergence every conver-
gence_check_frequency iterations

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.markov_clustering(G)

References

Enright, Anton J., Stijn Van Dongen, and Christos A. Ouzounis. An efficient algorithm for large-scale detection
of protein families. Nucleic acids research 30.7 (2002): 1575-1584.

66 Chapter 1. CDlib Dev Team

https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/meta/
https://github.com/taynaud/python-louvain
https://www.ncbi.nlm.nih.gov/pubmed/11917018/
https://www.ncbi.nlm.nih.gov/pubmed/11917018/

CDlib Documentation, Release 0.1.9

Note: Reference implementation: https://github.com/GuyAllard/markov_clustering

cdlib.algorithms.rber_pots

rber_pots(g_original, initial_membership=None, weights=None, node_sizes=None, resolu-
tion_parameter=1)

rber_pots is a model where the quality function to optimize is:

𝑄 =
∑︁
𝑖𝑗

(𝐴𝑖𝑗 − 𝛾𝑝) 𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix, 𝑝 = 𝑚

(𝑛2)
is the overall density of the graph, 𝜎𝑖 denotes the community of node

𝑖, 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise, and, finally 𝛾 is a resolution parameter.

Parameters

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or
an edge attribute. Deafault None

• node_sizes – list of int, or vertex attribute Sizes of nodes are necessary to know the size
of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific
cases this could be changed. Deafault None

• resolution_parameter – double >0 A parameter value controlling the coarseness of
the clustering. Higher resolutions lead to more communities, while lower resolutions lead
to fewer communities. Deafault 1

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.rber_pots(G)

References

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1),
016110. 10.1103/PhysRevE.74.016110

Note: Reference implementation: https://github.com/vtraag/leidenalg

1.5. Reference 67

https://github.com/GuyAllard/markov_clustering
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/
https://github.com/vtraag/leidenalg

CDlib Documentation, Release 0.1.9

cdlib.algorithms.rb_pots

rb_pots(g_original, initial_membership=None, weights=None, resolution_parameter=1)
Rb_pots is a model where the quality function to optimize is:

𝑄 =
∑︁
𝑖𝑗

(︂
𝐴𝑖𝑗 − 𝛾

𝑘𝑖𝑘𝑗
2𝑚

)︂
𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix, 𝑘𝑖 is the (weighted) degree of node 𝑖, 𝑚 is the total number of edges (or total
edge weight), 𝜎𝑖 denotes the community of node 𝑖 and 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise. For directed
graphs a slightly different formulation is used, as proposed by Leicht and Newman :

𝑄 =
∑︁
𝑖𝑗

(︃
𝐴𝑖𝑗 − 𝛾

𝑘out𝑖 𝑘in𝑗
𝑚

)︃
𝛿(𝜎𝑖, 𝜎𝑗),

where 𝑘out𝑖 and 𝑘in𝑖 refers to respectively the outdegree and indegree of node 𝑖 , and 𝐴𝑖𝑗 refers to an edge from
𝑖 to 𝑗. Note that this is the same of Leiden algorithm when setting 𝛾 = 1 and normalising by 2𝑚, or 𝑚 for
directed graphs.

Parameters

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or
an edge attribute. Deafault None

• resolution_parameter – double >0 A parameter value controlling the coarseness of
the clustering. Higher resolutions lead to more communities, while lower resolutions lead
to fewer communities. Default 1

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.rb_pots(G)

References

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1),
016110. 10.1103/PhysRevE.74.016110

Leicht, E. A., & Newman, M. E. J. (2008). Community Structure in Directed Networks. Physical Review
Letters, 100(11), 118703. 10.1103/PhysRevLett.100.118703

cdlib.algorithms.scan

scan(g_original, epsilon, mu)
SCAN (Structural Clustering Algorithm for Networks) is an algorithm which detects clusters, hubs and outliers
in networks. It clusters vertices based on a structural similarity measure. The method uses the neighborhood of
the vertices as clustering criteria instead of only their direct connections. Vertices are grouped into the clusters
by how they share neighbors.

68 Chapter 1. CDlib Dev Team

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/
https://www.ncbi.nlm.nih.gov/pubmed/18517839/

CDlib Documentation, Release 0.1.9

Parameters

• g_original – a networkx/igraph object

• epsilon – the minimum threshold to assigning cluster membership

• mu – minimum number of neineighbors with a structural similarity that exceeds the thresh-
old epsilon

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.scan(G, epsilon=0.7, mu=3)

References

Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. (2007, August). Scan: a structural clustering algorithm for
networks. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 824-833)

cdlib.algorithms.significance_communities

significance_communities(g_original, initial_membership=None, node_sizes=None)
Significance_communities is a model where the quality function to optimize is:

𝑄 =
∑︁
𝑐

(︂
𝑛𝑐

2

)︂
𝐷(𝑝𝑐 ‖ 𝑝)

where 𝑛𝑐 is the number of nodes in community 𝑐, 𝑝𝑐 = 𝑚𝑐

(𝑛𝑐
2)

, is the density of community 𝑐, 𝑝 = 𝑚

(𝑛2)
is the

overall density of the graph, and finally 𝐷(𝑥 ‖ 𝑦) = 𝑥 ln 𝑥
𝑦 + (1 − 𝑥) ln 1−𝑥

1−𝑦 is the binary Kullback-Leibler
divergence. For directed graphs simply multiply the binomials by 2. The expected Significance in Erdos-Renyi
graphs behaves roughly as 1

2𝑛 ln𝑛 for both directed and undirected graphs in this formulation.

Warning: This method is not suitable for weighted graphs.

Parameters

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• node_sizes – list of int, or vertex attribute Sizes of nodes are necessary to know the size
of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific
cases this could be changed. Deafault None

Returns NodeClustering object

Example

1.5. Reference 69

http://www1.se.cuhk.edu.hk/~hcheng/seg5010/slides/p824-xu.pdf/
http://www1.se.cuhk.edu.hk/~hcheng/seg5010/slides/p824-xu.pdf/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.significance_communities(G)

References

Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in community structure. Scientific Reports,
3, 2930. 10.1038/srep02930 <http://doi.org/10.1038/srep02930>

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.spinglass

spinglass(g_original)
Spinglass relies on an analogy between a very popular statistical mechanic model called Potts spin glass, and
the community structure. It applies the simulated annealing optimization technique on this model to optimize
the modularity.

Parameters g_original – a networkx/igraph object

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.spinglass(G)

References

Reichardt, Jörg, and Stefan Bornholdt. Statistical mechanics of community detection. Physical Review E 74.1
(2006): 016110.

cdlib.algorithms.surprise_communities

surprise_communities(g_original, initial_membership=None, weights=None, node_sizes=None)
Surprise_communities is a model where the quality function to optimize is:

𝑄 = 𝑚𝐷(𝑞 ‖ ⟨𝑞⟩)

where 𝑚 is the number of edges, 𝑞 =
∑︀

𝑐 𝑚𝑐

𝑚 , is the fraction of internal edges, ⟨𝑞⟩ =
∑︀

𝑐 (
𝑛𝑐
2)

(𝑛2)
is the expected

fraction of internal edges, and finally

𝐷(𝑥 ‖ 𝑦) = 𝑥 ln 𝑥
𝑦 + (1− 𝑥) ln 1−𝑥

1−𝑦 is the binary Kullback-Leibler divergence.

For directed graphs we can multiplying the binomials by 2, and this leaves ⟨𝑞⟩ unchanged, so that we can simply
use the same formulation. For weighted graphs we can simply count the total internal weight instead of the total
number of edges for 𝑞 , while ⟨𝑞⟩ remains unchanged.

Parameters

70 Chapter 1. CDlib Dev Team

https://www.nature.com/articles/srep02930/
https://github.com/vtraag/leidenalg
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/

CDlib Documentation, Release 0.1.9

• g_original – a networkx/igraph object

• initial_membership – list of int Initial membership for the partition. If None then
defaults to a singleton partition. Deafault None

• weights – list of double, or edge attribute Weights of edges. Can be either an iterable or
an edge attribute. Deafault None

• node_sizes – list of int, or vertex attribute Sizes of nodes are necessary to know the size
of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific
cases this could be changed. Deafault None

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.surprise_communities(G)

References

Traag, V. A., Aldecoa, R., & Delvenne, J.-C. (2015). Detecting communities using asymptotical surprise.
Physical Review E, 92(2), 022816. 10.1103/PhysRevE.92.022816

Note: Reference implementation: https://github.com/vtraag/leidenalg

cdlib.algorithms.walktrap

walktrap(g_original)
walktrap is an approach based on random walks. The general idea is that if you perform random walks on the
graph, then the walks are more likely to stay within the same community because there are only a few edges that
lead outside a given community. Walktrap runs short random walks and uses the results of these random walks
to merge separate communities in a bottom-up manner.

Parameters g_original – a networkx/igraph object

Returns NodeClusterint object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.walktrap(G)

References

Pons, Pascal, and Matthieu Latapy. Computing communities in large networks using random walks. J. Graph
Algorithms Appl. 10.2 (2006): 191-218.

1.5. Reference 71

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.022816/
https://github.com/vtraag/leidenalg
http://jgaa.info/accepted/2006/PonsLatapy2006.10.2.pdf/

CDlib Documentation, Release 0.1.9

cdlib.algorithms.sbm_dl

sbm_dl(g_original, B_min=None, B_max=None, deg_corr=True, **kwargs)
Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models.

Fit a non-overlapping stochastic block model (SBM) by minimizing its description length using an agglomera-
tive heuristic. If no parameter is given, the number of blocks will be discovered automatically. Bounds for the
number of communities can be provided using B_min, B_max.

Parameters

• g_original – network/igraph object

• B_min – minimum number of communities that can be found

• B_max – maximum number of communities that can be found

• deg_corr – if true, use the degree corrected version of the SBM

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = sbm_dl(G)

References

Tiago P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models”,
Phys. Rev. E 89, 012804 (2014), DOI: 10.1103/PhysRevE.89.012804 [sci-hub, @tor], arXiv: 1310.4378. ..
note:: Use implementation from graph-tool library, please report to https://graph-tool.skewed.de for details

cdlib.algorithms.sbm_dl_nested

sbm_dl_nested(g_original, B_min=None, B_max=None, deg_corr=True, **kwargs)
Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. (nested)

Fit a nested non-overlapping stochastic block model (SBM) by minimizing its description length using an ag-
glomerative heuristic. Return the lowest level found. Currently cdlib do not support hierarchical clustering.
If no parameter is given, the number of blocks will be discovered automatically. Bounds for the number of
communities can be provided using B_min, B_max.

Parameters

• g_original – igraph/networkx object

• B_min – minimum number of communities that can be found

• B_max – maximum number of communities that can be found

• deg_corr – if true, use the degree corrected version of the SBM

Returns NodeClustering object

Example

72 Chapter 1. CDlib Dev Team

https://graph-tool.skewed.de

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = sbm_dl(G)

References

Tiago P. Peixoto, “Hierarchical block structures and high-resolution model selection in large networks”, Physical
Review X 4.1 (2014): 011047 .. note:: Use implementation from graph-tool library, please report to https:
//graph-tool.skewed.de for details

Overlapping Communities

A clustering is said to be overlapping if any generic node can be assigned to more than one community. Methods in
this subclass return as result a NodeClustering object instance.

angel(g_original, threshold[, . . .]) Angel is a node-centric bottom-up community discov-
ery algorithm.

big_clam(g_original[, dimensions, . . .]) BigClam is an overlapping community detection
method that scales to large networks.

conga(g_original, number_communities) CONGA (Cluster-Overlap Newman Girvan Algorithm)
is an algorithm for discovering overlapping communi-
ties.

congo(g_original, number_communities[, height]) CONGO (CONGA Optimized) is an optimization of the
CONGA algortithm.

danmf(g_original[, layers, pre_iterations, . . .]) The procedure uses telescopic non-negative matrix fac-
torization in order to learn a cluster memmbership dis-
tribution over nodes.

demon(g_original, epsilon[, min_com_size]) Demon is a node-centric bottom-up overlapping com-
munity discovery algorithm.

ego_networks(g_original[, level]) Ego-networks returns overlapping communities cen-
tered at each nodes within a given radius.

egonet_splitter(g_original[, resolution]) The method first creates the egonets of nodes.
kclique(g_original, k) Find k-clique communities in graph using the percola-

tion method.
lais2(g_original) LAIS2 is an overlapping community discovery algo-

rithm based on the density function.
lemon(g_original, seeds[, min_com_size, . . .]) Lemon is a large scale overlapping community detec-

tion method based on local expansion via minimum one
norm.

lfm(g_original, alpha) LFM is based on the local optimization of a fitness func-
tion.

multicom(g_original, seed_node) MULTICOM is an algorithm for detecting multiple lo-
cal communities, possibly overlapping, by expanding
the initial seed set.

nmnf(g_original[, dimensions, clusters, . . .]) The procedure uses joint non-negative matrix factoriza-
tion with modularity based regul;arization in order to
learn a cluster memmbership distribution over nodes.

Continued on next page

1.5. Reference 73

https://graph-tool.skewed.de
https://graph-tool.skewed.de

CDlib Documentation, Release 0.1.9

Table 9 – continued from previous page
nnsed(g_original[, dimensions, iterations, seed]) The procedure uses non-negative matrix factorization in

order to learn an unnormalized cluster membership dis-
tribution over nodes.

node_perception(g_original, threshold, . . .) Node perception is based on the idea of joining together
small sets of nodes.

overlapping_seed_set_expansion(g_original,
seeds)

OSSE is an overlapping community detection algorithm
optimizing the conductance community score The algo-
rithm uses a seed set expansion approach; the key idea
is to find good seeds, and then expand these seed sets
using the personalized PageRank clustering procedure.

percomvc(g_original) The PercoMVC approach composes of two steps.
slpa(g_original[, t, r]) SLPA is an overlapping community discovery that ex-

tends tha LPA.
wCommunity(g_original[, min_bel_degree, . . .]) Algorithm to identify overlapping communities in

weighted graphs

cdlib.algorithms.angel

angel(g_original, threshold, min_community_size=3)
Angel is a node-centric bottom-up community discovery algorithm. It leverages ego-network structures and
overlapping label propagation to identify micro-scale communities that are subsequently merged in mesoscale
ones. Angel is the, faster, successor of Demon.

Parameters

• g_original – a networkx/igraph object

• threshold – merging threshold in [0,1].

• min_community_size – minimum community size, default 3.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.angel(G, min_com_size=3, threshold=0.25)

References

1. Rossetti, Giulio. “Exorcising the Demon: Angel, Efficient Node-Centric Community Discovery.” Interna-
tional Conference on Complex Networks and Their Applications. Springer, Cham, 2019.

Note: Reference implementation: https://github.com/GiulioRossetti/ANGEL

cdlib.algorithms.big_clam

big_clam(g_original, dimensions=8, iterations=50, learning_rate=0.005)
BigClam is an overlapping community detection method that scales to large networks. The procedure uses
gradient ascent to create an embedding which is used for deciding the node-cluster affiliations.

74 Chapter 1. CDlib Dev Team

https://github.com/GiulioRossetti/ANGEL

CDlib Documentation, Release 0.1.9

Parameters

• g_original – a networkx/igraph object

• dimensions – Number of embedding dimensions. Default 8.

• iterations – Number of training iterations. Default 50.

• learning_rate – Gradient ascent learning rate. Default is 0.005.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.big_clam(G)

References

Yang, Jaewon, and Jure Leskovec. “Overlapping community detection at scale: a nonnegative matrix factoriza-
tion approach.” Proceedings of the sixth ACM international conference on Web search and data mining. 2013.

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.conga

conga(g_original, number_communities)
CONGA (Cluster-Overlap Newman Girvan Algorithm) is an algorithm for discovering overlapping communi-
ties. It extends the Girvan and Newman’s algorithm with a specific method of deciding when and how to split
vertices. The algorithm is as follows:

1. Calculate edge betweenness of all edges in network.

2. Calculate vertex betweenness of vertices, from edge betweennesses.

3. Find candidate set of vertices: those whose vertex betweenness is greater than the maximum edge be-
tweenness.

4. If candidate set is non-empty, calculate pair betweennesses of candidate vertices, and then calculate split
betweenness of candidate vertices.

5. Remove edge with maximum edge betweenness or split vertex with maximum split betweenness (if
greater).

6. Recalculate edge betweenness for all remaining edges in same component(s) as removed edge or split
vertex.

7. Repeat from step 2 until no edges remain.

Parameters

• g_original – a networkx/igraph object

• number_communities – the number of communities desired

Returns NodeClustering object

Example

1.5. Reference 75

https://karateclub.readthedocs.io/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.conga(G, number_communities=3)

References

Gregory, Steve. An algorithm to find overlapping community structure in networks. European Conference on
Principles of Data Mining and Knowledge Discovery. Springer, Berlin, Heidelberg, 2007.

Note: Reference implementation: https://github.com/Lab41/Circulo/tree/master/circulo/algorithms

cdlib.algorithms.congo

congo(g_original, number_communities, height=2)
CONGO (CONGA Optimized) is an optimization of the CONGA algortithm. The CONGO algorithm is the
same as CONGA but using local betweenness. The complete CONGO algorithm is as follows:

1. Calculate edge betweenness of edges and split betweenness of vertices.

2. Find edge with maximum edge betweenness or vertex with maximum split betweenness, if greater.

3. Recalculate edge betweenness and split betweenness:

(a) Subtract betweenness of h-region centred on the removed edge or split vertex.

(b) Remove the edge or split the vertex.

(c) Add betweenness for the same region.

4. Repeat from step 2 until no edges remain.

Parameters

• g_original – a networkx/igraph object

• number_communities – the number of communities desired

• height – The lengh of the longest shortest paths that CONGO considers, default 2

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.congo(G, number_communities=3, height=2)

References

Gregory, Steve. A fast algorithm to find overlapping communities in networks. Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2008.

Note: Reference implementation: https://github.com/Lab41/Circulo/tree/master/circulo/algorithms

76 Chapter 1. CDlib Dev Team

https://link.springer.com/chapter/10.1007/978-3-540-74976-9_12/
https://github.com/Lab41/Circulo/tree/master/circulo/algorithms
https://link.springer.com/chapter/10.1007/978-3-540-87479-9_45/
https://github.com/Lab41/Circulo/tree/master/circulo/algorithms

CDlib Documentation, Release 0.1.9

cdlib.algorithms.danmf

danmf(g_original, layers=(32, 8), pre_iterations=100, iterations=100, seed=42, lamb=0.01)
The procedure uses telescopic non-negative matrix factorization in order to learn a cluster memmbership distri-
bution over nodes. The method can be used in an overlapping and non-overlapping way.

Parameters

• g_original – a networkx/igraph object

• layers – Autoencoder layer sizes in a list of integers. Default [32, 8].

• pre_iterations – Number of pre-training epochs. Default 100.

• iterations – Number of training epochs. Default 100.

• seed – Random seed for weight initializations. Default 42.

• lamb – Regularization parameter. Default 0.01.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.danmf(G)

References

Ye, Fanghua, Chuan Chen, and Zibin Zheng. “Deep autoencoder-like nonnegative matrix factorization for
community detection.” Proceedings of the 27th ACM International Conference on Information and Knowledge
Management. 2018.

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.demon

demon(g_original, epsilon, min_com_size=3)
Demon is a node-centric bottom-up overlapping community discovery algorithm. It leverages ego-network
structures and overlapping label propagation to identify micro-scale communities that are subsequently merged
in mesoscale ones.

Parameters

• g_original – a networkx/igraph object

• epsilon – merging threshold in [0,1], default 0.25.

• min_com_size – minimum community size, default 3.

Returns NodeClustering object

Example

1.5. Reference 77

https://karateclub.readthedocs.io/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.demon(G, min_com_size=3, epsilon=0.25)

References

1. Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2012, August). Demon: a local-first discovery
method for overlapping communities. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 615-623). ACM.

2. Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2014). Uncovering hierarchical and overlapping
communities with a local-first approach. ACM Transactions on Knowledge Discovery from Data (TKDD),
9(1), 6.

Note: Reference implementation: https://github.com/GiulioRossetti/DEMON

cdlib.algorithms.ego_networks

ego_networks(g_original, level=1)
Ego-networks returns overlapping communities centered at each nodes within a given radius.

Parameters

• g_original – a networkx/igraph object

• level – extrac communities with all neighbors of distance<=level from a node. Deafault
1

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.ego_networks(G)

cdlib.algorithms.egonet_splitter

egonet_splitter(g_original, resolution=1.0)
The method first creates the egonets of nodes. A persona-graph is created which is clustered by the Louvain
method.

Parameters

• g_original – a networkx/igraph object

• resolution – Resolution parameter of Python Louvain. Default 1.0.

Returns NodeClustering object

Example

78 Chapter 1. CDlib Dev Team

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.1788&rep=rep1&type=pdf/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.1788&rep=rep1&type=pdf/
https://dl.acm.org/citation.cfm?id=2629511/
https://dl.acm.org/citation.cfm?id=2629511/
https://github.com/GiulioRossetti/DEMON

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.egonet_splitter(G)

References

Epasto, Alessandro, Silvio Lattanzi, and Renato Paes Leme. “Ego-splitting framework: From non-overlapping
to overlapping clusters.” Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. 2017.

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.kclique

kclique(g_original, k)
Find k-clique communities in graph using the percolation method. A k-clique community is the union of all
cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques.

Parameters

• g_original – a networkx/igraph object

• k – Size of smallest clique

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.kclique(G, k=3)

References

Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, Uncovering the overlapping community structure
of complex networks in nature and society Nature 435, 814-818, 2005, doi:10.1038/nature03607

cdlib.algorithms.lais2

lais2(g_original)
LAIS2 is an overlapping community discovery algorithm based on the density function. In the algorithm con-
siders the density of a group is defined as the average density of the communication exchanges between the
actors of the group. LAIS2 IS composed of two procedures LA (Link Aggregate Algorithm) and IS2 (Iterative
Scan Algorithm).

Parameters g_original – a networkx/igraph object

Returns NodeClustering object

Example

1.5. Reference 79

https://karateclub.readthedocs.io/
https://www.nature.com/articles/nature03607/
https://www.nature.com/articles/nature03607/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.lais2(G)

References

Baumes, Jeffrey, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of overlapping communi-
ties. International Conference on Intelligence and Security Informatics. Springer, Berlin, Heidelberg, 2005.

Note: Reference implementation: https://github.com/kritishrivastava/CommunityDetection-Project2GDM

cdlib.algorithms.lemon

lemon(g_original, seeds, min_com_size=20, max_com_size=50, expand_step=6, subspace_dim=3,
walk_steps=3, biased=False)

Lemon is a large scale overlapping community detection method based on local expansion via minimum one
norm.

The algorithm adopts a local expansion method in order to identify the community members from a few ex-
emplary seed members. The algorithm finds the community by seeking a sparse vector in the span of the local
spectra such that the seeds are in its support. LEMON can achieve the highest detection accuracy among state-
of-the-art proposals. The running time depends on the size of the community rather than that of the entire
graph.

Parameters

• g_original – a networkx/igraph object

• seeds – Node list

• min_com_size – the minimum size of a single community in the network, default 20

• max_com_size – the maximum size of a single community in the network, default 50

• expand_step – the step of seed set increasement during expansion process, default 6

• subspace_dim – dimension of the subspace; choosing a large dimension is undesirable
because it would increase the computation cost of generating local spectra default 3

• walk_steps – the number of step for the random walk, default 3

• biased – boolean; set if the random walk starting from seed nodes, default False

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> seeds = ["0", "2", "3"]
>>> coms = algorithms.lemon(G, seeds, min_com_size=2, max_com_size=5)

References

80 Chapter 1. CDlib Dev Team

https://link.springer.com/chapter/10.1007/11427995_3/
https://link.springer.com/chapter/10.1007/11427995_3/
https://github.com/kritishrivastava/CommunityDetection-Project2GDM

CDlib Documentation, Release 0.1.9

Yixuan Li, Kun He, David Bindel, John Hopcroft Uncovering the small community structure in large networks:
A local spectral approach. Proceedings of the 24th international conference on world wide web. International
World Wide Web Conferences Steering Committee, 2015.

Note: Reference implementation: https://github.com/YixuanLi/LEMON

cdlib.algorithms.lfm

lfm(g_original, alpha)
LFM is based on the local optimization of a fitness function. It finds both overlapping communities and the
hierarchical structure.

Parameters

• g_original – a networkx/igraph object

• alpha – parameter to controll the size of the communities: Large values of alpha yield very
small communities, small values instead deliver large modules. If alpha is small enough, all
nodes end up in the same cluster, the network itself. In most cases, for alpha < 0.5 there is
only one community, for alpha > 2 one recovers the smallest communities. A natural choise
is alpha =1.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.lfm(G, alpha=0.8)

References

Lancichinetti, Andrea, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical commu-
nity structure in complex networks New Journal of Physics 11.3 (2009): 033015.

cdlib.algorithms.multicom

multicom(g_original, seed_node)
MULTICOM is an algorithm for detecting multiple local communities, possibly overlapping, by expanding the
initial seed set. This algorithm uses local scoring metrics to define an embedding of the graph around the seed
set. Based on this embedding, it picks new seeds in the neighborhood of the original seed set, and uses these
new seeds to recover multiple communities.

Parameters

• g_original – a networkx/igraph object

• seed_node – Id of the seed node around which we want to detect communities.

Returns EdgeClustering object

Example

1.5. Reference 81

https://dl.acm.org/citation.cfm?id=2736277.2741676/
https://dl.acm.org/citation.cfm?id=2736277.2741676/
https://github.com/YixuanLi/LEMON
https://arxiv.org/abs/0802.1218/
https://arxiv.org/abs/0802.1218/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.multicom(G, seed_node=0)

References

Hollocou, Alexandre, Thomas Bonald, and Marc Lelarge. Multiple Local Community Detection. ACM SIG-
METRICS Performance Evaluation Review 45.2 (2018): 76-83.

Note: Reference implementation: https://github.com/ahollocou/multicom

cdlib.algorithms.nmnf

nmnf(g_original, dimensions=128, clusters=10, lambd=0.2, alpha=0.05, beta=0.05, iterations=200,
lower_control=1e-15, eta=5.0)

The procedure uses joint non-negative matrix factorization with modularity based regul;arization in order to
learn a cluster memmbership distribution over nodes. The method can be used in an overlapping and non-
overlapping way.

Parameters

• g_original – a networkx/igraph object

• dimensions – Number of dimensions. Default is 128.

• clusters – Number of clusters. Default is 10.

• lambd – KKT penalty. Default is 0.2

• alpha – Clustering penalty. Default is 0.05.

• beta – Modularity regularization penalty. Default is 0.05.

• iterations – Number of power iterations. Default is 200.

• lower_control – Floating point overflow control. Default is 10**-15.

• eta – Similarity mixing parameter. Default is 5.0.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.nmnf(G)

References

Wang, Xiao, et al. “Community preserving network embedding.” Thirty-first AAAI conference on artificial
intelligence. 2017.

Note: Reference implementation: https://karateclub.readthedocs.io/

82 Chapter 1. CDlib Dev Team

https://hal.archives-ouvertes.fr/hal-01625444/document/
https://github.com/ahollocou/multicom
https://karateclub.readthedocs.io/

CDlib Documentation, Release 0.1.9

cdlib.algorithms.nnsed

nnsed(g_original, dimensions=32, iterations=10, seed=42)
The procedure uses non-negative matrix factorization in order to learn an unnormalized cluster membership
distribution over nodes. The method can be used in an overlapping and non-overlapping way.

Parameters

• g_original – a networkx/igraph object

• dimensions – Embedding layer size. Default is 32.

• iterations – Number of training epochs. Default 10.

• seed – Random seed for weight initializations. Default 42.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.nnsed(G)

References

Sun, Bing-Jie, et al. “A non-negative symmetric encoder-decoder approach for community detection.” Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management. 2017.

Note: Reference implementation: https://karateclub.readthedocs.io/

cdlib.algorithms.node_perception

node_perception(g_original, threshold, overlap_threshold, min_comm_size=3)
Node perception is based on the idea of joining together small sets of nodes. The algorithm first identifies sub-
communities corresponding to each node’s perception of the network around it. To perform this step, it considers
each node individually, and partition that node’s neighbors into communities using some existing community
detection method. Next, it creates a new network in which every node corresponds to a sub-community, and
two nodes are linked if their associated sub-communities overlap by at least some threshold amount. Finally,
the algorithm identifies overlapping communities in this new network, and for every such community, merge
together the associated sub-communities to identify communities in the original network.

Parameters

• g_original – a networkx/igraph object

• threshold – the tolerance required in order to merge communities

• overlap_threshold – the overlap tolerance

• min_comm_size – minimum community size default 3

Returns NodeClustering object

Example

1.5. Reference 83

https://karateclub.readthedocs.io/

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.node_perception(G, threshold=0.25, overlap_threshold=0.25)

References

Sucheta Soundarajan and John E. Hopcroft. 2015. Use of Local Group Information to Identify Com-
munities in Networks. ACM Trans. Knowl. Discov. Data 9, 3, Article 21 (April 2015), 27 pages.
DOI=http://dx.doi.org/10.1145/2700404

cdlib.algorithms.overlapping_seed_set_expansion

overlapping_seed_set_expansion(g_original, seeds, ninf=False, expansion=’ppr’, stop-
ping=’cond’, nworkers=1, nruns=13, alpha=0.99, maxex-
pand=inf, delta=0.2)

OSSE is an overlapping community detection algorithm optimizing the conductance community score The
algorithm uses a seed set expansion approach; the key idea is to find good seeds, and then expand these seed
sets using the personalized PageRank clustering procedure.

Parameters

• g_original – a networkx/igraph object

• seeds – Node list

• ninf – Neighbourhood Inflation parameter (boolean)

• expansion – Seed expansion: ppr or vppr

• stopping – Stopping criteria: cond

• nworkers – Number of Workers: default 1

• nruns – Number of runs: default 13

• alpha – alpha value for Personalized PageRank expansion: default 0.99

• maxexpand – Maximum expansion allowed for approximate ppr: default INF

• delta – Minimum distance parameter for near duplicate communities: default 0.2

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.overlapping_seed_set_expansion(G)

References

1.Whang, J. J., Gleich, D. F., & Dhillon, I. S. (2013, October). Overlapping community detection using seed
set expansion. In Proceedings of the 22nd ACM international conference on Conference on information &
knowledge management (pp. 2099-2108). ACM.

84 Chapter 1. CDlib Dev Team

https://dl.acm.org/citation.cfm?id=2737800.2700404/
https://dl.acm.org/citation.cfm?id=2737800.2700404/
http://www.cs.utexas.edu/~inderjit/public_papers/overlapping_commumity_cikm13.pdf/
http://www.cs.utexas.edu/~inderjit/public_papers/overlapping_commumity_cikm13.pdf/

CDlib Documentation, Release 0.1.9

Note: Reference implementation: https://github.com/pratham16/algorithms-detection-by-seed-expansion

cdlib.algorithms.percomvc

percomvc(g_original)
The PercoMVC approach composes of two steps. In the first step, the algorithm attempts to determine all
communities that the clique percolation algorithm may find. In the second step, the algorithm computes the
Eigenvector Centrality method on the output of the first step to measure the influence of network nodes and
reduce the rate of the unclassified nodes

Parameters g_original – a networkx/igraph object

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.percomvc(G)

References

Kasoro, Nathanaël, et al. “PercoMCV: A hybrid approach of community detection in social networks.” Procedia
Computer Science 151 (2019): 45-52.

Note: Reference implementation: https://github.com/sedjokas/PercoMCV-Code-source

cdlib.algorithms.slpa

slpa(g_original, t=21, r=0.1)
SLPA is an overlapping community discovery that extends tha LPA. SLPA consists of the following three stages:
1) the initialization 2) the evolution 3) the post-processing

Parameters

• g_original – a networkx/igraph object

• t – maximum number of iterations, default 20

• r – threshold [0, 1]. It is used in the post-processing stage: if the probability of seeing a
particular label during the whole process is less than r, this label is deleted from a node’s
memory. Default 0.1

Returns EdgeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.slpa(G, t=21, r=0.1)

1.5. Reference 85

https://github.com/pratham16/algorithms-detection-by-seed-expansion
https://github.com/sedjokas/PercoMCV-Code-source

CDlib Documentation, Release 0.1.9

References

Xie Jierui, Boleslaw K. Szymanski, and Xiaoming Liu. Slpa: Uncovering overlapping communities in social
networks via a speaker-listener interaction dynamic process. Data Mining Workshops (ICDMW), 2011 IEEE
11th International Conference on. IEEE, 2011.

Note: Reference implementation: https://github.com/kbalasu/SLPA

cdlib.algorithms.wCommunity

wCommunity(g_original, min_bel_degree=0.7, threshold_bel_degree=0.7, weightName=’weight’)
Algorithm to identify overlapping communities in weighted graphs

Parameters

• g_original – a networkx/igraph object

• min_bel_degree – the tolerance, in terms of beloging degree, required in order to add a
node in a community

• threshold_bel_degree – the tolerance, in terms of beloging degree, required in order
to add a node in a ‘NLU’ community

• weightName – name of the edge attribute containing the weights

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> nx.set_edge_attributes(G, values=1, name='weight')
>>> coms = algorithms.wCommunity(G, min_bel_degree=0.6, threshold_bel_degree=0.6)

References

Chen, D., Shang, M., Lv, Z., & Fu, Y. (2010). Detecting overlapping communities of weighted networks via a
local algorithm. Physica A: Statistical Mechanics and its Applications, 389(19), 4177-4187.

Note: Implementation provided by Marco Cardia <cardiamc@gmail.com> and Francesco Sabiu <fs-
abiu@gmail.com> (Computer Science Dept., University of Pisa, Italy)

Fuzzy Communities

A clustering is said to be a fuzzy if each node can belongs (with a different degree of likelihood) to more than one
community. Methods in this subclass return as result a FuzzyNodeClustering object instance.

frc_fgsn(g_original, theta, eps, r) Fuzzy-Rough Community Detection on Fuzzy Granular
model of Social Network.

86 Chapter 1. CDlib Dev Team

https://ieeexplore.ieee.org/document/6137400/
https://ieeexplore.ieee.org/document/6137400/
https://github.com/kbalasu/SLPA
mailto:cardiamc@gmail.com
mailto:fsabiu@gmail.com
mailto:fsabiu@gmail.com

CDlib Documentation, Release 0.1.9

cdlib.algorithms.frc_fgsn

frc_fgsn(g_original, theta, eps, r)
Fuzzy-Rough Community Detection on Fuzzy Granular model of Social Network.

FRC-FGSN assigns nodes to communities specifying the probability of each association. The flattened partition
ensure that each node is associated to the community that maximize such association probability. FRC-FGSN
may generate orphan nodes (i.e., nodes not assigned to any community).

Parameters

• g_original – networkx/igraph object

• theta – community density coefficient

• eps – coupling coefficient of the community. Ranges in [0, 1], small values ensure that
only strongly connected node granules are merged togheter.

• r – radius of the granule (int)

Returns FuzzyNodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = frc_fgsn(G, theta=1, eps=0.5, r=3)

References

Kundu, S., & Pal, S. K. (2015). Fuzzy-rough community in social networks. Pattern Recognition Letters, 67,
145-152.

Note: Reference implementation: https://github.com/nidhisridhar/Fuzzy-Community-Detection

Node Attribute

Methods in this subclass return as result a AttrNodeClustering object instance.

eva(g_original, labels[, weight, . . .])
The Eva algorithm extends the Louvain ap-
proach in order to deal with the attributes of
the nodes (aka Louvain Extended to Vertex
Attributes).

ilouvain(g_original, labels, id)
The I-Louvain algorithm extends the Lou-
vain approach in order to deal only with the
scalar attributes of the nodes.

1.5. Reference 87

https://www.sciencedirect.com/science/article/pii/S0167865515000537/
https://github.com/nidhisridhar/Fuzzy-Community-Detection

CDlib Documentation, Release 0.1.9

cdlib.algorithms.eva

eva(g_original, labels, weight=’weight’, resolution=1.0, randomize=False, alpha=0.5)

The Eva algorithm extends the Louvain approach in order to deal with the attributes of the nodes
(aka Louvain Extended to Vertex Attributes). It optimizes - combining them linearly - two quality
functions, a structural and a clustering one, namely Newman’s modularity and purity, estimated as the
product of the frequencies of the most frequent labels carried by the nodes within the communities.
A parameter alpha tunes the importance of the two functions: an high value of alpha favors the
clustering criterion instead of the structural one.

param g_original a networkx/igraph object

param labels dictionary specifying for each node (key) a dict (value) specifying the name
attribute (key) and its value (value)

param weight str, optional the key in graph to use as weight. Default to ‘weight’

param resolution double, optional Will change the size of the communities, default to 1.

param randomize boolean, optional Will randomize the node evaluation order and the
community evaluation order to get different partitions at each call, default False

param alpha float, assumed in [0,1], optional Will tune the importance of modularity and
purity criteria, default to 0.5

return AttrNodeClustering object

Example

>>> from cdlib.algorithms import eva
>>> import networkx as nx
>>> import random
>>> l1 = ['A', 'B', 'C', 'D']
>>> l2 = ["E", "F", "G"]
>>> g_attr = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g_attr.nodes():
>>> labels[node]={"l1":random.choice(l1), "l2":random.
→˓choice(l2)}
>>> communities = eva(g_attr, labels, alpha=0.8)

References

1. Citraro, S., & Rossetti, G. (2019, December). Eva: Attribute-Aware Network Segmentation. In Interna-
tional Conference on Complex Networks and Their Applications (pp. 141-151). Springer, Cham.

Note: Reference implementation: https://github.com/GiulioRossetti/Eva/tree/master/Eva

cdlib.algorithms.ilouvain

ilouvain(g_original, labels, id)

The I-Louvain algorithm extends the Louvain approach in order to deal only with the scalar attributes
of the nodes. It optimizes Newman’s modularity combined with an entropy measure.

param g_original a networkx/igraph object

88 Chapter 1. CDlib Dev Team

https://github.com/GiulioRossetti/Eva/tree/master/Eva

CDlib Documentation, Release 0.1.9

param labels dictionary specifying for each node (key) a dict (value) specifying the name
attribute (key) and its value (value)

param id a dict specifying the node id

return AttrNodeClustering object

Example

>>> from cdlib.algorithms import ilouvain
>>> import networkx as nx
>>> import random
>>> l1 = [0.1, 0.4, 0.5]
>>> l2 = [34, 3, 112]
>>> g_attr = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g_attr.nodes():
>>> labels[node]={"l1":random.choice(l1), "l2":random.
→˓choice(l2)}
>>> id = dict()
>>> for n in g.nodes():
>>> id[n] = n
>>> communities = ilouvain(g_attr, labels, id)

References

1. Combe D., Largeron C., Géry M., Egyed-Zsigmond E. “I-Louvain: An Attributed Graph Clustering
Method”. <https://link.springer.com/chapter/10.1007/978-3-319-24465-5_16> In: Fromont E., De Bie
T., van Leeuwen M. (eds) Advances in Intelligent Data Analysis XIV. IDA (2015). Lecture Notes in
Computer Science, vol 9385. Springer, Cham

Bipartite Graph Communities

Methods in this subclass return as result a BiNodeClustering object instance.

bimlpa(g_original[, theta, lambd]) BiMLPA is designed to detect the many-to-many cor-
respondence community in bipartite networks using
multi-label propagation algorithm.

cdlib.algorithms.bimlpa

bimlpa(g_original, theta=0.3, lambd=7)
BiMLPA is designed to detect the many-to-many correspondence community in bipartite networks using multi-
label propagation algorithm.

Parameters

• g_original – a networkx/igraph object

• theta – Label weights threshold. Default 0.3.

• lambd – The max number of labels. Default 7.

Returns BiNodeClustering object

Example

1.5. Reference 89

https://link.springer.com/chapter/10.1007/978-3-319-24465-5_16

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.algorithms.bipartite.generators.random_graph(100, 20, 0.1)
>>> coms = algorithms.bimlpa(G)

References

Taguchi, Hibiki, Tsuyoshi Murata, and Xin Liu. “BiMLPA: Community Detection in Bipartite Networks by
Multi-Label Propagation.” International Conference on Network Science. Springer, Cham, 2020.

Note: Reference implementation: https://github.com/hbkt/BiMLPA

Antichain Communities

Methods in this subclass are designed to extract communities from Directed Acyclic Graphs (DAG) and return as
result a NodeClustering object instance.

siblinarity_antichain(g_original[, . . .]) The algorithm extract communities from a DAG that (i)
respects its intrinsic order and (ii) are composed of sim-
ilar nodes.

cdlib.algorithms.siblinarity_antichain

siblinarity_antichain(g_original, forwards_backwards_on=True, backwards_forwards_on=False,
Lambda=1, with_replacement=False, space_label=None, time_label=None)

The algorithm extract communities from a DAG that (i) respects its intrinsic order and (ii) are composed of
similar nodes. The approach takes inspiration from classic similarity measures of bibliometrics, used to assess
how similar two publications are, based on their relative citation patterns.

Parameters

• g_original – a networkx/igraph object representing a DAG (directed acyclic graph)

• forwards_backwards_on – checks successors’ similarity. Boolean, default True

• backwards_forwards_on – checks predecessors’ similarity. Boolean, default True

• Lambda – desired resolution of the partition. Default 1

• with_replacement – If True he similarity of a node to itself is equal to the number of
its neighbours based on which the similarity is defined. Boolean, default True.

Returns NodeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.siblinarity_antichain(G, Lambda=1)

References

90 Chapter 1. CDlib Dev Team

https://github.com/hbkt/BiMLPA

CDlib Documentation, Release 0.1.9

Vasiliauskaite, V., Evans, T.S. Making communities show respect for order. Appl Netw Sci 5, 15 (2020). https:
//doi.org/10.1007/s41109-020-00255-5

Note: Reference implementation: https://github.com/vv2246/siblinarity_antichains

Edge Clustering

Algorithms falling in this category generates communities composed by edges. They return as result a
EdgeClustering object instance.

hierarchical_link_community(g_original) HLC (hierarchical link clustering) is a method to clas-
sify links into topologically related groups.

cdlib.algorithms.hierarchical_link_community

hierarchical_link_community(g_original)
HLC (hierarchical link clustering) is a method to classify links into topologically related groups. The algorithm
uses a similarity between links to build a dendrogram where each leaf is a link from the original network and
branches represent link communities. At each level of the link dendrogram is calculated the partition density
function, based on link density inside communities, to pick the best level to cut.

Parameters g_original – a networkx/igraph object

Returns EdgeClustering object

Example

>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.hierarchical_link_community(G)

References

Ahn, Yong-Yeol, James P. Bagrow, and Sune Lehmann. Link communities reveal multiscale complexity in
networks. nature 466.7307 (2010): 761.

1.5.3 Ensemble Methods

Methods to automate the execution of multiple instances of community detection algorithm(s).

Configuration Objects

Ranges can be specified to automate the execution of a same method while varying (part of) its inputs.

Parameter allows to specify ranges for numeric parameters, while BoolParamter for boolean ones.

Parameter(name, start, end, step)
BoolParameter(name, value)

1.5. Reference 91

https://doi.org/10.1007/s41109-020-00255-5
https://doi.org/10.1007/s41109-020-00255-5
https://github.com/vv2246/siblinarity_antichains
https://www.nature.com/articles/nature09182/
https://www.nature.com/articles/nature09182/

CDlib Documentation, Release 0.1.9

cdlib.ensemble.Parameter

class Parameter(name, start, end, step)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

count Return number of occurrences of value.
index Return first index of value.

Attributes

end Alias for field number 2
name Alias for field number 0
start Alias for field number 1
step Alias for field number 3

cdlib.ensemble.BoolParameter

class BoolParameter(name, value)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

count Return number of occurrences of value.
index Return first index of value.

Attributes

name Alias for field number 0
value Alias for field number 1

Multiple Instantiation

Two scenarios often arise when applying community discovery algorithms to a graph: 1. the need to compare the
results obtained by a give algorithm while varying its parameters 2. the need to compare the multiple algorithms

cdlib allows to do so by leveraging, respectively, grid_execution and pool.

92 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

grid_execution(graph, method, parameters) Instantiate the specified community discovery method
performing a grid search on the parameter set.

pool(graph, methods, configurations) Execute on a pool of community discovery internal on
the input graph.

cdlib.ensemble.grid_execution

grid_execution(graph, method, parameters)
Instantiate the specified community discovery method performing a grid search on the parameter set.

Parameters

• method – community discovery method (from nclib.community)

• graph – networkx/igraph object

• parameters – list of Parameter and BoolParameter objects

Returns at each call the generator yields a tuple composed by the current configuration and the
obtained communities

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> for communities in ensemble.grid_execution(graph=g, method=algorithms.louvain,
→˓ parameters=[resolution]):
>>> print(communities)

cdlib.ensemble.pool

pool(graph, methods, configurations)
Execute on a pool of community discovery internal on the input graph.

Parameters

• methods – list community discovery methods (from nclib.community)

• graph – networkx/igraph object

• configurations – list of lists (one for each method) of Parameter and BoolParameter
objects

Returns at each call the generator yields a tuple composed by: the actual method, its current con-
figuration and the obtained communities

Raises ValueError – if the number of methods is different from the number of configurations
specified

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> # Louvain

(continues on next page)

1.5. Reference 93

CDlib Documentation, Release 0.1.9

(continued from previous page)

>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> louvain_conf = [resolution, randomize]
>>>
>>> # Angel
>>> threshold = ensemble.Parameter(name="threshold", start=0.1, end=1, step=0.1)
>>> angel_conf = [threshold]
>>>
>>> methods = [algorithms.louvain, algorithms.angel]
>>>
>>> for communities in ensemble.pool(g, methods, [louvain_conf, angel_conf]):
>>> print(communities)

Optimal Configuration Search

In some scenarios it could be helpful delegate to the library the selection of the method parameters to obtain a
partition that optimize a given quality function. cdlib allows to do so using the methods grid_search and
random_search. Finally, pool_grid_filter generalizes such approach allowing to obtain the optimal parti-
tions from a pool of different algorithms.

grid_search(graph, method, parameters, . . .) Returns the optimal partition of the specified graph w.r.t.
random_search(graph, method, parameters, . . .) Returns the optimal partition of the specified graph w.r.t.
pool_grid_filter(graph, methods, . . . [, . . .]) Execute a pool of community discovery internal on the

input graph.

cdlib.ensemble.grid_search

grid_search(graph, method, parameters, quality_score, aggregate=<built-in function max>)
Returns the optimal partition of the specified graph w.r.t. the selected algorithm and quality score.

Parameters

• method – community discovery method (from nclib.community)

• graph – networkx/igraph object

• parameters – list of Parameter and BoolParameter objects

• quality_score – a fitness function to evaluate the obtained partition (from
nclib.evaluation)

• aggregate – function to select the best fitness value. Possible values: min/max

Returns at each call the generator yields a tuple composed by: the optimal configuration for the
given algorithm, input paramters and fitness function; the obtained communities; the fitness
score

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> communities, scoring = ensemble.grid_search(graph=g, method=algorithms.
→˓louvain, (continues on next page)

94 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

(continued from previous page)

>>> parameters=[resolution,
→˓randomize],
>>> quality_score=evaluation.
→˓erdos_renyi_modularity,
>>> aggregate=max)
>>> print(communities, scoring)

cdlib.ensemble.random_search

random_search(graph, method, parameters, quality_score, instances=10, aggregate=<built-in function
max>)

Returns the optimal partition of the specified graph w.r.t. the selected algorithm and quality score over a ran-
domized sample of the input parameters.

Parameters

• method – community discovery method (from nclib.community)

• graph – networkx/igraph object

• parameters – list of Parameter and BoolParameter objects

• quality_score – a fitness function to evaluate the obtained partition (from
nclib.evaluation)

• instances – number of randomly selected parameters configurations

• aggregate – function to select the best fitness value. Possible values: min/max

Returns at each call the generator yields a tuple composed by: the optimal configuration for the
given algorithm, input paramters and fitness function; the obtained communities; the fitness
score

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> communities, scoring = ensemble.random_search(graph=g, method=algorithms.
→˓louvain,
>>> parameters=[resolution,
→˓randomize],
>>> quality_
→˓score=evaluation.erdos_renyi_modularity,
>>> instances=5,
→˓aggregate=max)
>>> print(communities, scoring)

cdlib.ensemble.pool_grid_filter

pool_grid_filter(graph, methods, configurations, quality_score, aggregate=<built-in function max>)
Execute a pool of community discovery internal on the input graph. Returns the optimal partition for each
algorithm given the specified quality function.

Parameters

1.5. Reference 95

CDlib Documentation, Release 0.1.9

• methods – list community discovery methods (from nclib.community)

• graph – networkx/igraph object

• configurations – list of lists (one for each method) of Parameter and BoolParameter
objects

• quality_score – a fitness function to evaluate the obtained partition (from
nclib.evaluation)

• aggregate – function to select the best fitness value. Possible values: min/max

Returns at each call the generator yields a tuple composed by: the actual method, its optimal con-
figuration; the obtained communities; the fitness score.

Raises ValueError – if the number of methods is different from the number of configurations
specified

Example

>>> import networkx as nx
>>> from cdlib import algorithms, ensemble
>>> g = nx.karate_club_graph()
>>> # Louvain
>>> resolution = ensemble.Parameter(name="resolution", start=0.1, end=1, step=0.1)
>>> randomize = ensemble.BoolParameter(name="randomize")
>>> louvain_conf = [resolution, randomize]
>>>
>>> # Angel
>>> threshold = ensemble.Parameter(name="threshold", start=0.1, end=1, step=0.1)
>>> angel_conf = [threshold]
>>>
>>> methods = [algorithms.louvain, algorithms.angel]
>>>
>>> for communities, scoring in ensemble.pool_grid_filter(g, methods, [louvain_
→˓conf, angel_conf], quality_score=evaluation.erdos_renyi_modularity,
→˓aggregate=max):
>>> print(communities, scoring)

1.5.4 Evaluation

The evaluation of Community Discovery algorithms is not an easy task. CDlib implements two families of evaluation
strategies:

• Internal evaluation through quality scores

• External evaluation through partitions comparison

Fitness Functions

Fitness functions allows to summarize the characteristics of a computed set of communities. CDlib implements the
following quality scores:

avg_distance(graph, communities, **kwargs) Average distance.
avg_embeddedness(graph, communities,
**kwargs)

Average embeddedness of nodes within the community.

Continued on next page

96 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Table 22 – continued from previous page
average_internal_degree(graph, community,
. . .)

The average internal degree of the community set.

avg_transitivity(graph, communities,
**kwargs)

Average transitivity.

conductance(graph, community, **kwargs) Fraction of total edge volume that points outside the
community.

cut_ratio(graph, community, **kwargs) Fraction of existing edges (out of all possible edges)
leaving the community.

edges_inside(graph, community, **kwargs) Number of edges internal to the community.
expansion(graph, community, **kwargs) Number of edges per community node that point outside

the cluster.
fraction_over_median_degree(graph, . . .) Fraction of community nodes of having internal degree

higher than the median degree value.
hub_dominance(graph, communities, **kwargs) Hub dominance.
internal_edge_density(graph, community,
**kwargs)

The internal density of the community set.

normalized_cut(graph, community, **kwargs) Normalized variant of the Cut-Ratio
max_odf(graph, community, **kwargs) Maximum fraction of edges of a node of a community

that point outside the community itself.
avg_odf(graph, community, **kwargs) Average fraction of edges of a node of a community that

point outside the community itself.
flake_odf(graph, community, **kwargs) Fraction of nodes in S that have fewer edges pointing

inside than to the outside of the community.
scaled_density(graph, communities, **kwargs) Scaled density.
significance(graph, communities, **kwargs) Significance estimates how likely a partition of dense

communities appear in a random graph.
size(graph, communities, **kwargs) Size is the number of nodes in the community
surprise(graph, communities, **kwargs) Surprise is statistical approach proposes a quality metric

assuming that edges between vertices emerge randomly
according to a hyper-geometric distribution.

triangle_participation_ratio(graph, . . .) Fraction of community nodes that belong to a triad.
purity(communities) Purity is the product of the frequencies of the most fre-

quent labels carried by the nodes within the communi-
ties

cdlib.evaluation.avg_distance

avg_distance(graph, communities, **kwargs)
Average distance.

The average distance of a community is defined average path length across all possible pair of nodes composing
it.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

1.5. Reference 97

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.avg_distance(g,communities)

cdlib.evaluation.avg_embeddedness

avg_embeddedness(graph, communities, **kwargs)
Average embeddedness of nodes within the community.

The embeddedness of a node n w.r.t. a community C is the ratio of its degree within the community and its
overall degree.

𝑒𝑚𝑏(𝑛,𝐶) =
𝑘𝐶𝑛
𝑘𝑛

The average embeddedness of a community C is:

𝑎𝑣𝑔𝑒𝑚𝑏𝑑(𝑐) =
1

|𝐶|
∑︁
𝑖∈𝐶

𝑘𝐶𝑛
𝑘𝑛

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> ave = evaluation.avg_embeddedness(g,communities)

References

cdlib.evaluation.average_internal_degree

average_internal_degree(graph, community, **kwargs)
The average internal degree of the community set.

𝑓(𝑆) =
2𝑚𝑆

𝑛𝑆

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑚𝑆 ‘𝑖𝑠𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑒𝑑𝑔𝑒𝑠𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑛𝑆 ‘𝑖𝑠𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝑛𝑜𝑑𝑒𝑠.

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

98 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.average_internal_degree(g,communities)

References

1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.

cdlib.evaluation.avg_transitivity

avg_transitivity(graph, communities, **kwargs)
Average transitivity.

The average transitivity of a community is defined the as the average clustering coefficient of its nodes w.r.t.
their connection within the community itself.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.avg_transitivity(g,communities)

cdlib.evaluation.conductance

conductance(graph, community, **kwargs)
Fraction of total edge volume that points outside the community.

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆

where 𝑐𝑆 is the number of community nodes and, 𝑚𝑆 is the number of community edges

Parameters

• graph – a networkx/igraph object

1.5. Reference 99

CDlib Documentation, Release 0.1.9

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.conductance(g,communities)

References

1.Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS), 107 (2000)

cdlib.evaluation.cut_ratio

cut_ratio(graph, community, **kwargs)
Fraction of existing edges (out of all possible edges) leaving the community.

..math:: f(S) = frac{c_S}{n_S (n n_S)}

where 𝑐𝑆 is the number of community nodes and, 𝑛𝑆 is the number of edges on the community boundary

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.cut_ratio(g,communities)

References

1. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75–174 (2010)

cdlib.evaluation.edges_inside

edges_inside(graph, community, **kwargs)
Number of edges internal to the community.

Parameters

• graph – a networkx/igraph object

100 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.edges_inside(g,communities)

References

1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.

cdlib.evaluation.expansion

expansion(graph, community, **kwargs)
Number of edges per community node that point outside the cluster.

𝑓(𝑆) =
𝑐𝑆
𝑛𝑆

where 𝑛𝑆 is the number of edges on the community boundary, 𝑐𝑆 is the number of community nodes.

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.expansion(g,communities)

References

1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.

1.5. Reference 101

CDlib Documentation, Release 0.1.9

cdlib.evaluation.fraction_over_median_degree

fraction_over_median_degree(graph, community, **kwargs)
Fraction of community nodes of having internal degree higher than the median degree value.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) : 𝑣 ∈ 𝑆}| > 𝑑𝑚}|

𝑛𝑆

where 𝑑𝑚 is the internal degree median value

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.fraction_over_median_degree(g,communities)

References

1. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowledge
and Information Systems 42(1), 181–213 (2015)

cdlib.evaluation.hub_dominance

hub_dominance(graph, communities, **kwargs)
Hub dominance.

The hub dominance of a community is defined as the ratio of the degree of its most connected node w.r.t. the
theoretically maximal degree within the community.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.hub_dominance(g,communities)

102 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

cdlib.evaluation.internal_edge_density

internal_edge_density(graph, community, **kwargs)
The internal density of the community set.

𝑓(𝑆) =
𝑚𝑆

𝑛𝑆(𝑛𝑆1)/2

where 𝑚𝑆 is the number of community internal edges and 𝑛𝑆 is the number of community nodes.

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.internal_edge_density(g,communities)

References

1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.

cdlib.evaluation.normalized_cut

normalized_cut(graph, community, **kwargs)
Normalized variant of the Cut-Ratio

𝑓(𝑆) =
𝑐𝑆

2𝑚𝑆 + 𝑐𝑆
+

𝑐𝑆
2(𝑚𝑚𝑆) + 𝑐𝑆

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of community internal edges and 𝑐𝑆 is the number of
community nodes.

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

1.5. Reference 103

CDlib Documentation, Release 0.1.9

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.normalized_cut(g,communities)

References

1.Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS), 107 (2000)

cdlib.evaluation.max_odf

max_odf(graph, community, **kwargs)
Maximum fraction of edges of a node of a community that point outside the community itself.

𝑚𝑎𝑥𝑢∈𝑆
|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|

𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆 and 𝑑(𝑢) is the degree of 𝑢

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.max_odf(g,communities)

References

1. Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities. In: KDD, vol.
2000, pp. 150–160 (2000)

cdlib.evaluation.avg_odf

avg_odf(graph, community, **kwargs)
Average fraction of edges of a node of a community that point outside the community itself.

1

𝑛𝑆

∑︁
𝑢∈𝑆

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ̸∈ 𝑆}|
𝑑(𝑢)

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of community nodes.

Parameters

104 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.avg_odf(g,communities)

References

1. Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities. In: KDD, vol.
2000, pp. 150–160 (2000)

cdlib.evaluation.flake_odf

flake_odf(graph, community, **kwargs)
Fraction of nodes in S that have fewer edges pointing inside than to the outside of the community.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, |{(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝑆}| < 𝑑(𝑢)/2}|

𝑛𝑆

where 𝐸 is the graph edge set, 𝑣 is a node in 𝑆, 𝑑(𝑢) is the degree of 𝑢 and 𝑛𝑆 is the set of community nodes.

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.flake_odf(g,communities)

References

1. Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities. In: KDD, vol.
2000, pp. 150–160 (2000)

1.5. Reference 105

CDlib Documentation, Release 0.1.9

cdlib.evaluation.scaled_density

scaled_density(graph, communities, **kwargs)
Scaled density.

The scaled density of a community is defined as the ratio of the community density w.r.t. the complete graph
density.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.scaled_density(g,communities)

cdlib.evaluation.significance

significance(graph, communities, **kwargs)
Significance estimates how likely a partition of dense communities appear in a random graph.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.significance(g,communities)

References

1. Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical surprise.
Physical Review E, 92(2), 022816.

cdlib.evaluation.size

size(graph, communities, **kwargs)
Size is the number of nodes in the community

106 Chapter 1. CDlib Dev Team

https://link.aps.org/doi/10.1103/PhysRevE.92.022816/

CDlib Documentation, Release 0.1.9

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> sz = evaluation.size(g,communities)

cdlib.evaluation.surprise

surprise(graph, communities, **kwargs)
Surprise is statistical approach proposes a quality metric assuming that edges between vertices emerge randomly
according to a hyper-geometric distribution.

According to the Surprise metric, the higher the score of a partition, the less likely it is resulted from a random
realization, the better the quality of the community structure.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.surprise(g,communities)

References

1. Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities using asymptotical surprise.
Physical Review E, 92(2), 022816.

cdlib.evaluation.triangle_participation_ratio

triangle_participation_ratio(graph, community, **kwargs)
Fraction of community nodes that belong to a triad.

𝑓(𝑆) =
|{𝑢 : 𝑢 ∈ 𝑆, {(𝑣, 𝑤) : 𝑣, 𝑤 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∈ 𝐸, (𝑣, 𝑤) ∈ 𝐸} ≠ ∅}|

𝑛𝑆

where 𝑛𝑆 is the set of community nodes.

1.5. Reference 107

https://link.aps.org/doi/10.1103/PhysRevE.92.022816/

CDlib Documentation, Release 0.1.9

Parameters

• graph – a networkx/igraph object

• community – NodeClustering object

• summary – boolean. If True it is returned an aggregated score for the partition is returned,
otherwise individual-community ones. Default True.

Returns If summary==True a FitnessResult object, otherwise a list of floats.

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.triangle_participation_ratio(g,communities)

References

1. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowledge
and Information Systems 42(1), 181–213 (2015)

cdlib.evaluation.purity

purity(communities)
Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities

Parameters communities – AttrNodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import eva
>>> from cdlib import evaluation
>>> import random
>>> l1 = ['A', 'B', 'C', 'D']
>>> l2 = ["E", "F", "G"]
>>> g = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g.nodes():
>>> labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)}
>>> communities = eva(g_attr, labels, alpha=0.5)
>>> pur = evaluation.purity(communities)

References

1. Citraro, Salvatore, and Giulio Rossetti. “Eva: Attribute-Aware Network Segmentation.” International Con-
ference on Complex Networks and Their Applications. Springer, Cham, 2019.

Among the fitness function a well-defined family of measures is the Modularity-based one:

erdos_renyi_modularity(graph, communities,
. . .)

Erdos-Renyi modularity is a variation of the Newman-
Girvan one.

Continued on next page

108 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Table 23 – continued from previous page
link_modularity(graph, communities, **kwargs) Quality function designed for directed graphs with over-

lapping communities.
modularity_density(graph, communities,
**kwargs)

The modularity density is one of several propositions
that envisioned to palliate the resolution limit issue of
modularity based measures.

newman_girvan_modularity(graph, communi-
ties, . . .)

Difference the fraction of intra community edges of a
partition with the expected number of such edges if dis-
tributed according to a null model.

z_modularity(graph, communities, **kwargs) Z-modularity is another variant of the standard modu-
larity proposed to avoid the resolution limit.

cdlib.evaluation.erdos_renyi_modularity

erdos_renyi_modularity(graph, communities, **kwargs)
Erdos-Renyi modularity is a variation of the Newman-Girvan one. It assumes that vertices in a network are
connected randomly with a constant probability 𝑝.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆
𝑚𝑛𝑆(𝑛𝑆1)

𝑛(𝑛1)
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of community edges, 𝑙𝑆 is the number of edges from
nodes in S to nodes outside S.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.erdos_renyi_modularity(g,communities)

References

1. Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

cdlib.evaluation.link_modularity

link_modularity(graph, communities, **kwargs)
Quality function designed for directed graphs with overlapping communities.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

1.5. Reference 109

https://gnunet.org/sites/default/files/Erd%C5%91s%20%26%20R%C3%A9nyi%20-%20On%20Random%20Graphs.pdf/

CDlib Documentation, Release 0.1.9

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.link_modularity(g,communities)

References

1. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed
graphs with overlapping communities. Journal of Statistical Mechanics: Theory and Experiment 2009(03),
03024 (2009)

cdlib.evaluation.modularity_density

modularity_density(graph, communities, **kwargs)
The modularity density is one of several propositions that envisioned to palliate the resolution limit issue of
modularity based measures. The idea of this metric is to include the information about community size into the
expected density of community to avoid the negligence of small and dense communities. For each community
𝐶 in partition 𝑆, it uses the average modularity degree calculated by 𝑑(𝐶) = 𝑑𝑖𝑛𝑡(𝐶)𝑑𝑒𝑥𝑡(𝐶) where 𝑑𝑖𝑛𝑡(𝐶) and
𝑑𝑒𝑥𝑡(𝐶) are the average internal and external degrees of 𝐶 respectively to evaluate the fitness of 𝐶 in its network.
Finally, the modularity density can be calculated as follows:

𝑄(𝑆) =
∑︁
𝐶∈𝑆

1

𝑛𝐶
(
∑︁
𝑖∈𝐶

𝑘𝑖𝑛𝑡𝑖𝐶 −
∑︁
𝑖∈𝐶

𝑘𝑜𝑢𝑡𝑖𝐶)

where 𝑛𝐶 is the number of nodes in C, 𝑘𝑖𝑛𝑡𝑖𝐶 is the degree of node i within 𝐶 and 𝑘𝑜𝑢𝑡𝑖𝐶 is the deree of node i
outside 𝐶.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.modularity_density(g,communities)

References

1. Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function for community
detection. Physical review E, 77(3), 036109.

cdlib.evaluation.newman_girvan_modularity

newman_girvan_modularity(graph, communities, **kwargs)
Difference the fraction of intra community edges of a partition with the expected number of such edges if
distributed according to a null model.

110 Chapter 1. CDlib Dev Team

https://www.sciencedirect.com/science/article/pii/S0020025516305059/
https://www.sciencedirect.com/science/article/pii/S0020025516305059/

CDlib Documentation, Release 0.1.9

In the standard version of modularity, the null model preserves the expected degree sequence of the graph under
consideration. In other words, the modularity compares the real network structure with a corresponding one
where nodes are connected without any preference about their neighbors.

𝑄(𝑆) =
1

𝑚

∑︁
𝑐∈𝑆

(𝑚𝑆 − (2𝑚𝑆 + 𝑙𝑆)
2

4𝑚
)

where 𝑚 is the number of graph edges, 𝑚𝑆 is the number of community edges, 𝑙𝑆 is the number of edges from
nodes in S to nodes outside S.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.newman_girvan_modularity(g,communities)

References

1. Newman, M.E.J. & Girvan, M. Finding and evaluating community structure in networks. Physical Review
E 69, 26113(2004).

cdlib.evaluation.z_modularity

z_modularity(graph, communities, **kwargs)
Z-modularity is another variant of the standard modularity proposed to avoid the resolution limit. The concept
of this version is based on an observation that the difference between the fraction of edges inside communities
and the expected number of such edges in a null model should not be considered as the only contribution to the
final quality of community structure.

Parameters

• graph – a networkx/igraph object

• communities – NodeClustering object

Returns FitnessResult object

Example:

>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.z_modularity(g,communities)

References

1. Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for community detection in networks.
PloS one 11.1 (2016): e0147805.

1.5. Reference 111

https://www.ncbi.nlm.nih.gov/pubmed/14995526/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147805/

CDlib Documentation, Release 0.1.9

Some measures will return an instance of FitnessResult that takes together min/max/mean/std values of the
computed index.

FitnessResult(min, max, score, std)

cdlib.evaluation.FitnessResult

class FitnessResult(min, max, score, std)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

count Return number of occurrences of value.
index Return first index of value.

Attributes

max Alias for field number 1
min Alias for field number 0
score Alias for field number 2
std Alias for field number 3

Partition Comparisons

It is often useful to compare different graph partition to assess their resemblance (i.e., to perform ground truth testing).
CDlib implements the following partition comparisons scores:

adjusted_mutual_information(first_partition,
. . .)

Adjusted Mutual Information between two clusterings.

adjusted_rand_index(first_partition, . . .) Rand index adjusted for chance.
f1(first_partition, second_partition) Compute the average F1 score of the optimal algorithms

matches among the partitions in input.
nf1(first_partition, second_partition) Compute the Normalized F1 score of the optimal algo-

rithms matches among the partitions in input.
normalized_mutual_information(. . .) Normalized Mutual Information between two cluster-

ings.
omega(first_partition, second_partition) Index of resemblance for overlapping, complete cover-

age, network clusterings.
overlapping_normalized_mutual_information_LFK(. . .)Overlapping Normalized Mutual Information between

two clusterings.
overlapping_normalized_mutual_information_MGH(. . .)Overlapping Normalized Mutual Information between

two clusterings.
variation_of_information(first_partition, . . .) Variation of Information among two nodes partitions.

112 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

cdlib.evaluation.adjusted_mutual_information

adjusted_mutual_information(first_partition, second_partition)
Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the AMI
is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand
Index.

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_mutual_information(louvain_communities,leiden_communities)

Reference

1. Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for chance. Journal of Machine Learning Research,
11(Oct), 2837-2854.

cdlib.evaluation.adjusted_rand_index

adjusted_rand_index(first_partition, second_partition)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the
number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

1.5. Reference 113

http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/

CDlib Documentation, Release 0.1.9

ARI is a symmetric measure:

adjusted_rand_index(a, b) == adjusted_rand_index(b, a)

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_rand_index(louvain_communities,leiden_communities)

Reference

1. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

cdlib.evaluation.f1

f1(first_partition, second_partition)
Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.f1(louvain_communities,leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms detection
internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

cdlib.evaluation.nf1

nf1(first_partition, second_partition)
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on
overlapping/non-overlapping complete/partial coverage partitions.

114 Chapter 1. CDlib Dev Team

https://link.springer.com/article/10.1007/BF01908075/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/

CDlib Documentation, Release 0.1.9

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.nf1(louvain_communities,leiden_communities)

Reference

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms detection
internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of Complex
Networks. 5(6), 893-912.

cdlib.evaluation.normalized_mutual_information

normalized_mutual_information(first_partition, second_partition)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is
normalized by sqrt(H(labels_true) * H(labels_pred))

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.normalized_mutual_information(louvain_communities,
→˓leiden_communities)

cdlib.evaluation.omega

omega(first_partition, second_partition)
Index of resemblance for overlapping, complete coverage, network clusterings.

Parameters

• first_partition – NodeClustering object

1.5. Reference 115

https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/
https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/

CDlib Documentation, Release 0.1.9

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.omega(louvain_communities,leiden_communities)
:Reference:

1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for evaluating ab-
stractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics and System Comparison
for Automatic Summarization. Association for Computational Linguistics, Stroudsburg, PA, USA, 10-18.

cdlib.evaluation.overlapping_normalized_mutual_information_LFK

overlapping_normalized_mutual_information_LFK(first_partition, second_partition)
Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the
version proposed by Lancichinetti et al. (1)

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_LFK(louvain_communities,
→˓leiden_communities)
:Reference:

1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical commu-
nity structure in complex networks. New Journal of Physics, 11(3), 033015.

cdlib.evaluation.overlapping_normalized_mutual_information_MGH

overlapping_normalized_mutual_information_MGH(first_partition, second_partition, normal-
ization=’max’)

Overlapping Normalized Mutual Information between two clusterings.

Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the
version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more
details.

Parameters

116 Chapter 1. CDlib Dev Team

https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/
https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/

CDlib Documentation, Release 0.1.9

• first_partition – NodeClustering object

• second_partition – NodeClustering object

• normalization – one of “max” or “LFK”. Default “max” (corresponds to the main
method described in the article)

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities,
→˓leiden_communities)
:Reference:

1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlapping
community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago

cdlib.evaluation.variation_of_information

variation_of_information(first_partition, second_partition)
Variation of Information among two nodes partitions.

$$ H(p)+H(q)-2MI(p, q) $$

where MI is the mutual information, H the partition entropy and p,q are the algorithms sets

Parameters

• first_partition – NodeClustering object

• second_partition – NodeClustering object

Returns MatchingResult object

Example

>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.variation_of_information(louvain_communities,leiden_communities)

Reference

1. Meila, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate Analy-
sis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

Some measures will return an instance of MatchingResult that takes together mean and standard deviation values
of the computed index.

MatchingResult(score, std)

1.5. Reference 117

https://www.sciencedirect.com/science/article/pii/S0047259X06002016/

CDlib Documentation, Release 0.1.9

cdlib.evaluation.MatchingResult

class MatchingResult(score, std)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

count Return number of occurrences of value.
index Return first index of value.

Attributes

score Alias for field number 0
std Alias for field number 1

1.5.5 Input-Output

Functions to save/load CDlib communities to/from file.

CSV format

The easiest way to save the result of a community discovery algorithm is to organize it in a .csv file. The following
methods allows to read/write communities to/from csv.

read_community_csv(path[, delimiter, nodetype]) Read community list from comma separated value (csv)
file.

write_community_csv(communities, path[, . . .]) Save community structure to comma separated value
(csv) file.

cdlib.readwrite.read_community_csv

read_community_csv(path, delimiter=’, ’, nodetype=<class ’str’>)
Read community list from comma separated value (csv) file.

Parameters

• path – input filename

• delimiter – column delimiter

• nodetype – specify the type of node labels, default str

Returns NodeClustering object

Example

>>> import networkx as nx
>>> from cdlib import algorithms, readwrite

(continues on next page)

118 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

(continued from previous page)

>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_csv(coms, "communities.csv", ",")
>>> coms = readwrite.read_community_csv(coms, "communities.csv", ",", str)

cdlib.readwrite.write_community_csv

write_community_csv(communities, path, delimiter=’, ’)
Save community structure to comma separated value (csv) file.

Parameters

• communities – a NodeClustering object

• path – output filename

• delimiter – column delimiter

Example

>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_csv(coms, "communities.csv", ",")

Note: CSV formatting allows only to save/retrieve NodeClustering object loosing most of the metadata present in the
CD computation result - e.g., algorithm name, parameters, coverage. . .

JSON format

JSON format allows to store/load community discovery algorithm results in a more comprehensive way.

read_community_json(path) Read community list from JSON file.
write_community_json(communities, path) Generate a JSON representation of the clustering object

cdlib.readwrite.read_community_json

read_community_json(path)
Read community list from JSON file.

Parameters path – input filename

Returns a Clustering object

Example

>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)

(continues on next page)

1.5. Reference 119

CDlib Documentation, Release 0.1.9

(continued from previous page)

>>> readwrite.write_community_json(coms, "communities.json")
>>> readwrite.read_community_json(coms, "communities.json")

cdlib.readwrite.write_community_json

write_community_json(communities, path)
Generate a JSON representation of the clustering object

Parameters

• communities – a cdlib clustering object

• path – output filename

Returns a JSON formatted string representing the object

Example

>>> import networkx as nx
>>> from cdlib import algorithms, readwrite
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> readwrite.write_community_json(coms, "communities.json")

Note: JSON formatting allows only to save/retrieve all kind of Clustering object maintaining all their metadata -
except for the graph object instance.

1.5.6 Visual Analytics

At the end of the analytical process is it often useful to visualize the obtained results. CDlib provides a few built-in
facilities to ease such task.

Network Visualization

Visualizing a graph is always a good idea (if its size is reasonable).

plot_network_clusters(graph, partition[, . . .]) Plot a graph with node color coding for communities.
plot_community_graph(graph, partition[, . . .]) Plot a algorithms-graph with node color coding for com-

munities.

cdlib.viz.plot_network_clusters

plot_network_clusters(graph, partition, position=None, figsize=(8, 8), node_size=200,
plot_overlaps=False, plot_labels=False, cmap=None, top_k=None,
min_size=None)

Plot a graph with node color coding for communities.

Parameters

• graph – NetworkX/igraph graph

120 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

• partition – NodeClustering object

• position – A dictionary with nodes as keys and positions as values. Example: net-
workx.fruchterman_reingold_layout(G). By default, uses nx.spring_layout(g)

• figsize – the figure size; it is a pair of float, default (8, 8)

• node_size – int, default 200

• plot_overlaps – bool, default False. Flag to control if multiple algorithms member-
ships are plotted.

• plot_labels – bool, default False. Flag to control if node labels are plotted.

• cmap – str or Matplotlib colormap, Colormap(Matplotlib colormap) for mapping intensities
of nodes. If set to None, original colormap is used.

• top_k – int, Show the top K influential communities. If set to zero or negative value
indicates all.

• min_size – int, Exclude communities below the specified minimum size.

Example:

>>> from cdlib import algorithms, viz
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> pos = nx.spring_layout(g)
>>> viz.plot_network_clusters(g, coms, pos)

cdlib.viz.plot_community_graph

plot_community_graph(graph, partition, figsize=(8, 8), node_size=200, plot_overlaps=False,
plot_labels=False, cmap=None, top_k=None, min_size=None)

Plot a algorithms-graph with node color coding for communities.

Parameters

• graph – NetworkX/igraph graph

• partition – NodeClustering object

• figsize – the figure size; it is a pair of float, default (8, 8)

• node_size – int, default 200

• plot_overlaps – bool, default False. Flag to control if multiple algorithms member-
ships are plotted.

• plot_labels – bool, default False. Flag to control if node labels are plotted.

• cmap – str or Matplotlib colormap, Colormap(Matplotlib colormap) for mapping intensities
of nodes. If set to None, original colormap is used..

• top_k – int, Show the top K influential communities. If set to zero or negative value
indicates all.

• min_size – int, Exclude communities below the specified minimum size.

Example:

1.5. Reference 121

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms, viz
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> viz.plot_community_graph(g, coms)

Analytics plots

Community evaluation outputs can be easily used to generate a visual representation of the main partition characteris-
tics.

plot_sim_matrix(clusterings, scoring) Plot a similarity matrix between a list of clusterings, us-
ing the provided scoring function.

plot_com_stat(com_clusters, com_fitness) Plot the distribution of a property among all communi-
ties for a clustering, or a list of clusterings (violin-plots)

plot_com_properties_relation(com_clusters,
. . .)

Plot the relation between two properties/fitness function
of a clustering

plot_scoring(graphs, ref_partitions, . . . [, . . .]) Plot the scores obtained by a list of methods on a list of
graphs.

cdlib.viz.plot_sim_matrix

plot_sim_matrix(clusterings, scoring)
Plot a similarity matrix between a list of clusterings, using the provided scoring function.

Parameters

• clusterings – list of clusterings to compare

• scoring – the scoring function to use

Returns a ClusterGrid instance

Example:

>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> clustermap = viz.plot_sim_matrix([coms,coms2],evaluation.adjusted_mutual_
→˓information)

cdlib.viz.plot_com_stat

plot_com_stat(com_clusters, com_fitness)
Plot the distribution of a property among all communities for a clustering, or a list of clusterings (violin-plots)

Parameters

• com_clusters – list of clusterings to compare, or a single clustering

• com_fitness – the fitness/community property to use

Returns the violin-plots

122 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

Example:

>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> violinplot = viz.plot_com_stat([coms,coms2],evaluation.size)

cdlib.viz.plot_com_properties_relation

plot_com_properties_relation(com_clusters, com_fitness_x, com_fitness_y, **kwargs)
Plot the relation between two properties/fitness function of a clustering

Parameters

• com_clusters – clustering(s) to analyze (cluster or cluster list)

• com_fitness_x – first fitness/community property

• com_fitness_y – first fitness/community property

• kwargs – parameters for the seaborn lmplot

Returns a seaborn lmplot

Example:

>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> lmplot = viz.plot_com_properties_relation([coms,coms2],evaluation.size,
→˓evaluation.internal_edge_density)

cdlib.viz.plot_scoring

plot_scoring(graphs, ref_partitions, graph_names, methods, scoring=<function ad-
justed_mutual_information>, nbRuns=5)

Plot the scores obtained by a list of methods on a list of graphs.

Parameters

• graphs – list of graphs on which to make computations

• ref_partitions – list of reference clusterings corresponding to graphs

• graph_names – list of the names of the graphs to display

• methods – list of functions that take a graph as input and return a Clustering as output

• scoring – the scoring function to use, default anmi

• nbRuns – number of runs to do for each method on each graph

Returns a seaborn lineplot

Example:

1.5. Reference 123

CDlib Documentation, Release 0.1.9

>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g1 = nx.algorithms.community.LFR_benchmark_graph(1000, 3, 1.5, 0.5, min_
→˓community=20, average_degree=5)
>>> g2 = nx.algorithms.community.LFR_benchmark_graph(1000, 3, 1.5, 0.7, min_
→˓community=20, average_degree=5)
>>> names = ["g1", "g2"]
>>> graphs = [g1, g2]
>>> for g in graphs:
>>> references.append(NodeClustering(communities={frozenset(g.nodes[v][
→˓'community']) for v in g}, graph=g, method_name="reference"))
>>> algos = [algorithms.crisp_partition.louvain, algorithms.crisp_partition.label_
→˓propagation]
>>> viz.plot_scoring(graphs, references, names, algos, nbRuns=2)

1.5.7 Utilities

CDlib exposes a few utilities to manipulate graph objects generated with igraph and networkx.

Graph Transformation

Transform igraph to/from networkx objects.

convert_graph_formats(graph, desired_format) Converts from/to networkx/igraph

cdlib.utils.convert_graph_formats

convert_graph_formats(graph, desired_format, directed=None)
Converts from/to networkx/igraph

Parameters

• graph – original graph object

• desired_format – desired final type. Either nx.Graph or ig.Graph

• directed – boolean, default False

Returns the converted graph

Raises TypeError – if input graph is neither an instance of nx.Graph nor ig.Graph

Identifier mapping

Remapping of graph nodes. It is often a good idea - to limit the memory usage - to use progressive integers as node
labels. CDlib automatically - and transparently - makes the conversion for the user, however, this step can be costly:
for such reason the library also exposes facilities to directly pre/post process the network/community data.

nx_node_integer_mapping(graph) Maps node labels from strings to integers.
remap_node_communities(communities,
node_map)

Apply a map to the obtained communities to retreive the
original node labels

124 Chapter 1. CDlib Dev Team

CDlib Documentation, Release 0.1.9

cdlib.utils.nx_node_integer_mapping

nx_node_integer_mapping(graph)
Maps node labels from strings to integers.

Parameters graph – networkx graph

Returns if the node labels are string: networkx graph, dictionary <numeric_id, origi-
nal_node_label>, false otherwise

cdlib.utils.remap_node_communities

remap_node_communities(communities, node_map)
Apply a map to the obtained communities to retreive the original node labels

Parameters

• communities – NodeClustering object

• node_map – dictionary <numeric_id, node_label>

Returns remapped communities

1.6 Developer Guide

1.7 Bibliography

CDlib was developed for research purposes.

Reference algorithms:

• Crisp Partition:

– Girvan-Newman: Girvan, Michelle, and Mark EJ Newman. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.

– EM: Newman, Mark EJ, and Elizabeth A. Leicht. Mixture community and exploratory analysis
in networks. Proceedings of the National Academy of Sciences 104.23 (2007): 9564-9569.

– SCAN: Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. (2007, August). Scan: a structural
clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining (pp. 824-833)

– GDMP2: Chen, Jie, and Yousef Saad. Dense subgraph extraction with application to community
detection. IEEE Transactions on Knowledge and Data Engineering 24.7 (2012): 1216-1230.

– Spinglass: Reichardt, Jörg, and Stefan Bornholdt. Statistical mechanics of community detection.
Physical Review E 74.1 (2006): 016110.

– Eigenvector: Newman, Mark EJ. Finding community structure in networks using the eigenvectors
of matrices. Physical review E 74.3 (2006): 036104.

– AGDL: Zhang, W., Wang, X., Zhao, D., & Tang, X. (2012, October). Graph degree linkage:
Agglomerative clustering on a directed graph. In European Conference on Computer Vision (pp.
428-441). Springer, Berlin, Heidelberg.

– Louvain: Blondel, Vincent D., et al. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment 2008.10 (2008): P10008.

1.6. Developer Guide 125

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/
https://www.pnas.org/content/104/23/9564/
https://www.pnas.org/content/104/23/9564/
http://www1.se.cuhk.edu.hk/~hcheng/seg5010/slides/p824-xu.pdf/
http://www1.se.cuhk.edu.hk/~hcheng/seg5010/slides/p824-xu.pdf/
https://ieeexplore.ieee.org/document/5677532/
https://ieeexplore.ieee.org/document/5677532/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.74.036104/
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.74.036104/
https://link.springer.com/chapter/10.1007/978-3-642-33718-5_31/
https://link.springer.com/chapter/10.1007/978-3-642-33718-5_31/
https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/meta/

CDlib Documentation, Release 0.1.9

– Leiden: Traag, Vincent, Ludo Waltman, and Nees Jan van Eck. From Louvain to Leiden: guar-
anteeing well-connected communities. arXiv preprint arXiv:1810.08473 (2018).

– Rb_pots:

1. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physi-
cal Review E, 74(1), 016110. 10.1103/PhysRevE.74.016110

2. Leicht, E. A., & Newman, M. E. J. (2008). Community Structure in Directed Networks.
Physical Review Letters, 100(11), 118703. 10.1103/PhysRevLett.100.118703

– Rber_pots: Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection.
Physical Review E, 74(1), 016110. 10.1103/PhysRevE.74.016110

– CPM: Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-free
community detection. Physical Review E, 84(1), 016114. 10.1103/PhysRevE.84.016114

– Significance_communities: Traag, V. A., Krings, G., & Van Dooren, P. (2013). Sig-
nificant scales in community structure. Scientific Reports, 3, 2930. 10.1038/srep02930
<http://doi.org/10.1038/srep02930>

– Surprise_communities: Traag, V. A., Aldecoa, R., & Delvenne, J.-C. (2015). Detecting com-
munities using asymptotical surprise. Physical Review E, 92(2), 022816. 10.1103/Phys-
RevE.92.022816

– Greedy_modularity: Clauset, A., Newman, M. E., & Moore, C. Finding community structure in
very large networks. Physical Review E 70(6), 2004

– Infomap: Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal
community structure. Proc Natl Acad SciUSA 105(4):1118–1123

– Walktrap: Pons, Pascal, and Matthieu Latapy. Computing communities in large networks using
random walks. J. Graph Algorithms Appl. 10.2 (2006): 191-218.

– Label_propagation: Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algo-
rithm to detect community structures in large-scale networks. Physical review E, 76(3), 036106.

– Async_fluid: Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard
Ayguadé, Jesús Labarta, Ulises Cortés, Toyotaro Suzumura T. Fluid Communities: A Competitive
and Highly Scalable Community Detection Algorithm.

– DER: M. Kozdoba and S. Mannor, Community Detection via Measure Space Embedding, NIPS
2015

– FRC_FGSN: Kundu, S., & Pal, S. K. (2015). Fuzzy-rough community in social networks. Pattern
Recognition Letters, 67, 145-152.

– SBM_dl: Tiago P. Peixoto, Efficient Monte Carlo and greedy heuristic for the inference of
stochastic block models , Phys. Rev. E 89, 012804 (2014), DOI: 10.1103/PhysRevE.89.012804
[sci-hub, @tor], arXiv: 1310.4378.

– SBM_dl_nested: Tiago P. Peixoto, Hierarchical block structures and high-resolution model se-
lection in large networks ,Physical Review X 4.1 (2014): 011047

• Edge clustering:

– hierarchical_link_community: Ahn, Yong-Yeol, James P. Bagrow, and Sune Lehmann. Link
communities reveal multiscale complexity in networks. nature 466.7307 (2010): 761.

– Markov_clustering: Enright, Anton J., Stijn Van Dongen, and Christos A. Ouzounis. An efficient
algorithm for large-scale detection of protein families. Nucleic acids research 30.7 (2002): 1575-
1584.

• Overlapping partition:

126 Chapter 1. CDlib Dev Team

https://arxiv.org/abs/1810.08473/
https://arxiv.org/abs/1810.08473/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/
https://www.ncbi.nlm.nih.gov/pubmed/18517839/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.016114/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.016114/
https://www.nature.com/articles/srep02930/
https://www.nature.com/articles/srep02930/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.022816/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.022816/
http://ece-research.unm.edu/ifis/papers/community-moore.pdf/
http://ece-research.unm.edu/ifis/papers/community-moore.pdf/
https://www.pnas.org/content/105/4/1118/
https://www.pnas.org/content/105/4/1118/
http://jgaa.info/accepted/2006/PonsLatapy2006.10.2.pdf/
http://jgaa.info/accepted/2006/PonsLatapy2006.10.2.pdf/
http://www.leonidzhukov.net/hse/2017/networks/papers/raghavan2007.pdf/
http://www.leonidzhukov.net/hse/2017/networks/papers/raghavan2007.pdf/
https://link.springer.com/chapter/10.1007/978-3-319-72150-7_19/
https://link.springer.com/chapter/10.1007/978-3-319-72150-7_19/
https://papers.nips.cc/paper/5808-community-detection-via-measure-space-embedding/
https://www.sciencedirect.com/science/article/pii/S0167865515000537/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012804/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012804/
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047/
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047/
https://www.nature.com/articles/nature09182/
https://www.nature.com/articles/nature09182/
https://www.ncbi.nlm.nih.gov/pubmed/11917018/
https://www.ncbi.nlm.nih.gov/pubmed/11917018/

CDlib Documentation, Release 0.1.9

– Demon:

1. Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2012, August). Demon: a local-first
discovery method for overlapping communities. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining (pp. 615-623). ACM.

2. Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2014). Uncovering hierarchical
and overlapping communities with a local-first approach. ACM Transactions on Knowledge
Discovery from Data (TKDD), 9(1), 6.

– Angel: Rossetti, G. (2019) Exorcising the Demon: Angel, Efficient Node-Centric Community
Discovery. International Conference on Complex Networks and Their Applications. Springer,
Cham.

– Node_perception: Sucheta Soundarajan and John E. Hopcroft. 2015. Use of Local Group Infor-
mation to Identify Communities in Networks. ACM Trans. Knowl. Discov. Data 9, 3, Article 21
(April 2015), 27 pages. DOI=http://dx.doi.org/10.1145/2700404

– Overlapping_seed_set_expansion: Whang, J. J., Gleich, D. F., & Dhillon, I. S. (2013, October).
Overlapping community detection using seed set expansion. In Proceedings of the 22nd ACM
international conference on Conference on information & knowledge management (pp. 2099-
2108). ACM.

– Kclique: Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, Uncovering the overlap-
ping community structure of complex networks in nature and society Nature 435, 814-818, 2005,
doi:10.1038/nature03607

– LFM: Lancichinetti, Andrea, Santo Fortunato, and János Kertész. Detecting the overlapping
and hierarchical community structure in complex networks New Journal of Physics 11.3 (2009):
033015.

– Lais2: Baumes, Jeffrey, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of
overlapping communities. International Conference on Intelligence and Security Informatics.
Springer, Berlin, Heidelberg, 2005.

– Congo: Gregory, Steve. A fast algorithm to find overlapping communities in networks. Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
Berlin, Heidelberg, 2008.

– Conga: Gregory, Steve. An algorithm to find overlapping community structure in networks.
European Conference on Principles of Data Mining and Knowledge Discovery. Springer, Berlin,
Heidelberg, 2007.

– Lemon: Yixuan Li, Kun He, David Bindel, John Hopcroft Uncovering the small community
structure in large networks: A local spectral approach. Proceedings of the 24th international
conference on world wide web. International World Wide Web Conferences Steering Committee,
2015.

– SLPA: Xie Jierui, Boleslaw K. Szymanski, and Xiaoming Liu. Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction dynamic process. Data Mining
Workshops (ICDMW), 2011 IEEE 11th International Conference on. IEEE, 2011.

– Multicom: Hollocou, Alexandre, Thomas Bonald, and Marc Lelarge. Multiple Local Community
Detection. ACM SIGMETRICS Performance Evaluation Review 45.2 (2018): 76-83.

– Big_clam: Yang, J., & Leskovec, J. (2013, February). Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth ACM international con-
ference on Web search and data mining (pp. 587-596). ACM.

Reference evaluation:

• Comparison:

1.7. Bibliography 127

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.1788&rep=rep1&type=pdf/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.1788&rep=rep1&type=pdf/
https://dl.acm.org/citation.cfm?id=2629511/
https://dl.acm.org/citation.cfm?id=2629511/
https://link.springer.com/chapter/10.1007/978-3-030-36687-2_13
https://link.springer.com/chapter/10.1007/978-3-030-36687-2_13
https://dl.acm.org/citation.cfm?id=2737800.2700404/
https://dl.acm.org/citation.cfm?id=2737800.2700404/
http://www.cs.utexas.edu/~inderjit/public_papers/overlapping_commumity_cikm13.pdf/
https://www.nature.com/articles/nature03607/
https://www.nature.com/articles/nature03607/
https://arxiv.org/abs/0802.1218/
https://arxiv.org/abs/0802.1218/
https://link.springer.com/chapter/10.1007/11427995_3/
https://link.springer.com/chapter/10.1007/11427995_3/
https://link.springer.com/chapter/10.1007/978-3-540-87479-9_45/
https://link.springer.com/chapter/10.1007/978-3-540-74976-9_12/
https://dl.acm.org/citation.cfm?id=2736277.2741676/
https://dl.acm.org/citation.cfm?id=2736277.2741676/
https://ieeexplore.ieee.org/document/6137400/
https://ieeexplore.ieee.org/document/6137400/
https://hal.archives-ouvertes.fr/hal-01625444/document/
https://hal.archives-ouvertes.fr/hal-01625444/document/
https://dl.acm.org/citation.cfm?id=2433471/
https://dl.acm.org/citation.cfm?id=2433471/

CDlib Documentation, Release 0.1.9

– Omega: Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. Using the omega index for
evaluating abstractive algorithms detection. In Proceedings of Workshop on Evaluation Metrics
and System Comparison for Automatic Summarization. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 10-18.

– f1: Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algorithms
detection internal on ground truth. In Complex Networks VII (pp. 133-144). Springer, Cham.

– nf1:

1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). A novel approach to evaluate algo-
rithms detection internal on ground truth.

2. Rossetti, G. (2017). : RDyn: graph benchmark handling algorithms dynamics. Journal of
Complex Networks. 5(6), 893-912.

– Adjusted_rand_index: Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classifi-
cation, 2(1), 193-218.

– Adjusted_mutual_information: Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theo-
retic measures for clusterings comparison: Variants, properties, normalization and correction for
chance. Journal of Machine Learning Research, 11(Oct), 2837-2854.

– Variation_of_information: Meila, M. (2007). Comparing clusterings - an information based dis-
tance. Journal of Multivariate Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013

– Overlapping_normalized_mutual_information_MGH: McDaid, A. F., Greene, D., & Hurley, N.
(2011). Normalized mutual information to evaluate overlapping community finding algorithms..
arXiv preprint arXiv:1110.2515. Chicago

– Overlapping_normalized_mutual_information_LFK: Lancichinetti, A., Fortunato, S., & Kertesz,
J. (2009). Detecting the overlapping and hierarchical community structure in complex networks.
New Journal of Physics, 11(3), 033015.

• Fitness:

– Newman_girvan_modularity: Newman, M.E.J. & Girvan, M. Finding and evaluating algorithms
structure in networks. Physical Review E 69, 26113(2004).

– Erdos_renyi_modularity: Erdos, P., & Renyi, A. (1959). On random graphs I. Publ. Math. Debrecen,
6, 290-297.

– Modularity_density: Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative
function for algorithms detection. Physical review E, 77(3), 036109.

– Z_modularity: Miyauchi, Atsushi, and Yasushi Kawase. Z-score-based modularity for algorithms
detection in networks. PloS one 11.1 (2016): e0147805.

– Surprise & Significance: Traag, V. A., Aldecoa, R., & Delvenne, J. C. (2015). Detecting communities
using asymptotical surprise .. Physical Review E, 92(2), 022816.

– average_internal_degree: Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004).
Defining and identifying communities in networks. Proceedings of the National Academy of Sciences,
101(9), 2658-2663.

– conductance: Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS),
107 (2000)

– cut_ratio: Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75–174 (2010)

– edges_inside: Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining
and identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9),
2658-2663.

128 Chapter 1. CDlib Dev Team

https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/
https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/
https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/
https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/
https://link.springer.com/article/10.1007/BF01908075/
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/
https://www.sciencedirect.com/science/article/pii/S0047259X06002016/
https://www.sciencedirect.com/science/article/pii/S0047259X06002016/
https://arxiv.org/abs/1110.2515/
https://iopscience.iop.org/article/10.1088/1367-2630/11/3/033015/meta/
https://www.ncbi.nlm.nih.gov/pubmed/14995526/
https://www.ncbi.nlm.nih.gov/pubmed/14995526/
https://gnunet.org/sites/default/files/Erd%C5%91s%20%26%20R%C3%A9nyi%20-%20On%20Random%20Graphs.pdf/
https://www.sciencedirect.com/science/article/pii/S0020025516305059/
https://www.sciencedirect.com/science/article/pii/S0020025516305059/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147805/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147805/
https://link.aps.org/doi/10.1103/PhysRevE.92.022816/
https://link.aps.org/doi/10.1103/PhysRevE.92.022816/
https://www.pnas.org/content/101/9/2658.short/
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1101&context=cis_papers/
https://www.sciencedirect.com/science/article/pii/S0370157309002841/
https://www.pnas.org/content/101/9/2658.short/
https://www.pnas.org/content/101/9/2658.short/

CDlib Documentation, Release 0.1.9

– expansion: Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and
identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9),
2658-2663.

– internal_edge_density: Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004).
Defining and identifying communities in networks. Proceedings of the National Academy of Sciences,
101(9), 2658-2663.

– normalized_cut: Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers
(CIS), 107 (2000)

– fraction_over_median_degree: Yang, J and Leskovec, J.: Defining and evaluating network communi-
ties based on ground-truth. Knowledge and Information Systems 42(1), 181–213 (2015)

– max_odf: Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities.
In: KDD, vol. 2000, pp. 150–160 (2000)

– avg_odf: Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities.
In: KDD, vol. 2000, pp. 150–160 (2000)

– flake_odf: Flake, G.W., Lawrence, S., Giles, C.L., et al.: Efficient identification of web communities.
In: KDD, vol. 2000, pp. 150–160 (2000)

– triangle_participation_ratio: Yang, J and Leskovec, J.: Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems 42(1), 181–213 (2015)

– link_modularity: Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition
of modularity to directed graphs with overlapping communities. Journal of Statistical Mechanics:
Theory and Experiment 2009(03), 03024 (2009)

So far it has been used as support to the following publications:

• Hubert, M. Master Thesis. (2020) Crawling and Analysing code review networks on industry and open source
data

• Pister, A., Buono, P., Fekete, J. D., Plaisant, C., & Valdivia, P. (2020). Integrating Prior Knowledge in Mixed
Initiative Social Network Clustering. arXiv preprint arXiv:2005.02972.

• Mohammadmosaferi, K. K., & Naderi, H. (2020). Evolution of communities in dynamic social networks: An
efficient map-based approach. Expert Systems with Applications, 147, 113221.

1.7. Bibliography 129

https://www.pnas.org/content/101/9/2658.short/
https://www.pnas.org/content/101/9/2658.short/
https://www.pnas.org/content/101/9/2658.short/
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1101&context=cis_papers/
https://link.springer.com/article/10.1007/s10115-013-0693-z/
https://link.springer.com/article/10.1007/s10115-013-0693-z/
https://courses.cs.washington.edu/courses/cse522/05au/communities-flake.pdf/
https://courses.cs.washington.edu/courses/cse522/05au/communities-flake.pdf/
https://courses.cs.washington.edu/courses/cse522/05au/communities-flake.pdf/
https://link.springer.com/article/10.1007/s10115-013-0693-z/
https://link.springer.com/article/10.1007/s10115-013-0693-z/
https://iopscience.iop.org/article/10.1088/1742-5468/2009/03/P03024/meta/
https://iopscience.iop.org/article/10.1088/1742-5468/2009/03/P03024/meta/
https://oss.cs.fau.de/wp-content/uploads/2020/04/Hubert_2020.pdf
https://oss.cs.fau.de/wp-content/uploads/2020/04/Hubert_2020.pdf
https://arxiv.org/abs/2005.02972
https://arxiv.org/abs/2005.02972
https://www.sciencedirect.com/science/article/pii/S0957417420300476
https://www.sciencedirect.com/science/article/pii/S0957417420300476

CDlib Documentation, Release 0.1.9

130 Chapter 1. CDlib Dev Team

Python Module Index

c
cdlib.algorithms, 55
cdlib.ensemble, 91
cdlib.evaluation, 96
cdlib.readwrite, 118
cdlib.utils, 124
cdlib.viz, 120

131

CDlib Documentation, Release 0.1.9

132 Python Module Index

Index

Symbols
__init__() (BoolParameter method), 92
__init__() (FitnessResult method), 112
__init__() (MatchingResult method), 118
__init__() (Parameter method), 92

A
adjusted_mutual_information() (AttrNodeClustering

method), 32
adjusted_mutual_information() (BiNodeClustering

method), 43
adjusted_mutual_information() (FuzzyNodeClustering

method), 20
adjusted_mutual_information() (in module

cdlib.evaluation), 113
adjusted_mutual_information() (NodeClustering

method), 7
adjusted_rand_index() (AttrNodeClustering method), 32
adjusted_rand_index() (BiNodeClustering method), 44
adjusted_rand_index() (FuzzyNodeClustering method),

20
adjusted_rand_index() (in module cdlib.evaluation), 113
adjusted_rand_index() (NodeClustering method), 7
agdl() (in module cdlib.algorithms), 57
angel() (in module cdlib.algorithms), 74
aslpaw() (in module cdlib.algorithms), 57
async_fluid() (in module cdlib.algorithms), 58
AttrNodeClustering (class in cdlib), 32
average_internal_degree() (AttrNodeClustering method),

33
average_internal_degree() (BiNodeClustering method),

45
average_internal_degree() (FuzzyNodeClustering

method), 21
average_internal_degree() (in module cdlib.evaluation),

98
average_internal_degree() (NodeClustering method), 8
avg_distance() (in module cdlib.evaluation), 97
avg_embeddedness() (in module cdlib.evaluation), 98

avg_odf() (AttrNodeClustering method), 33
avg_odf() (BiNodeClustering method), 45
avg_odf() (FuzzyNodeClustering method), 21
avg_odf() (in module cdlib.evaluation), 104
avg_odf() (NodeClustering method), 8
avg_transitivity() (in module cdlib.evaluation), 99

B
big_clam() (in module cdlib.algorithms), 74
bimlpa() (in module cdlib.algorithms), 89
BiNodeClustering (class in cdlib), 43
BoolParameter (class in cdlib.ensemble), 92

C
cdlib.algorithms (module), 55, 91
cdlib.ensemble (module), 91
cdlib.evaluation (module), 96
cdlib.readwrite (module), 118
cdlib.utils (module), 124
cdlib.viz (module), 120
chinesewhispers() (in module cdlib.algorithms), 59
conductance() (AttrNodeClustering method), 34
conductance() (BiNodeClustering method), 45
conductance() (FuzzyNodeClustering method), 21
conductance() (in module cdlib.evaluation), 99
conductance() (NodeClustering method), 9
conga() (in module cdlib.algorithms), 75
congo() (in module cdlib.algorithms), 76
convert_graph_formats() (in module cdlib.utils), 124
cpm() (in module cdlib.algorithms), 58
cut_ratio() (AttrNodeClustering method), 34
cut_ratio() (BiNodeClustering method), 46
cut_ratio() (FuzzyNodeClustering method), 22
cut_ratio() (in module cdlib.evaluation), 100
cut_ratio() (NodeClustering method), 9

D
danmf() (in module cdlib.algorithms), 77
demon() (in module cdlib.algorithms), 77

133

CDlib Documentation, Release 0.1.9

der() (in module cdlib.algorithms), 60

E
EdgeClustering (class in cdlib), 54
edges_inside() (AttrNodeClustering method), 34
edges_inside() (BiNodeClustering method), 46
edges_inside() (FuzzyNodeClustering method), 22
edges_inside() (in module cdlib.evaluation), 100
edges_inside() (NodeClustering method), 9
edmot() (in module cdlib.algorithms), 61
ego_networks() (in module cdlib.algorithms), 78
egonet_splitter() (in module cdlib.algorithms), 78
eigenvector() (in module cdlib.algorithms), 61
em() (in module cdlib.algorithms), 62
erdos_renyi_modularity() (AttrNodeClustering method),

35
erdos_renyi_modularity() (BiNodeClustering method),

46
erdos_renyi_modularity() (FuzzyNodeClustering

method), 22
erdos_renyi_modularity() (in module cdlib.evaluation),

109
erdos_renyi_modularity() (NodeClustering method), 10
eva() (in module cdlib.algorithms), 88
expansion() (AttrNodeClustering method), 35
expansion() (BiNodeClustering method), 47
expansion() (FuzzyNodeClustering method), 23
expansion() (in module cdlib.evaluation), 101
expansion() (NodeClustering method), 10

F
f1() (AttrNodeClustering method), 35
f1() (BiNodeClustering method), 47
f1() (FuzzyNodeClustering method), 23
f1() (in module cdlib.evaluation), 114
f1() (NodeClustering method), 10
FitnessResult (class in cdlib.evaluation), 112
flake_odf() (AttrNodeClustering method), 36
flake_odf() (BiNodeClustering method), 47
flake_odf() (FuzzyNodeClustering method), 23
flake_odf() (in module cdlib.evaluation), 105
flake_odf() (NodeClustering method), 11
fraction_over_median_degree() (AttrNodeClustering

method), 36
fraction_over_median_degree() (BiNodeClustering

method), 48
fraction_over_median_degree() (FuzzyNodeClustering

method), 24
fraction_over_median_degree() (in module

cdlib.evaluation), 102
fraction_over_median_degree() (NodeClustering

method), 11
frc_fgsn() (in module cdlib.algorithms), 87
FuzzyNodeClustering (class in cdlib), 19

G
gdmp2() (in module cdlib.algorithms), 62
get_description() (AttrNodeClustering method), 36
get_description() (BiNodeClustering method), 48
get_description() (EdgeClustering method), 55
get_description() (FuzzyNodeClustering method), 24
get_description() (NodeClustering method), 11
girvan_newman() (in module cdlib.algorithms), 63
greedy_modularity() (in module cdlib.algorithms), 63
grid_execution() (in module cdlib.ensemble), 93
grid_search() (in module cdlib.ensemble), 94

H
hierarchical_link_community() (in module

cdlib.algorithms), 91
hub_dominance() (in module cdlib.evaluation), 102

I
ilouvain() (in module cdlib.algorithms), 88
infomap() (in module cdlib.algorithms), 64
internal_edge_density() (AttrNodeClustering method), 37
internal_edge_density() (BiNodeClustering method), 48
internal_edge_density() (FuzzyNodeClustering method),

24
internal_edge_density() (in module cdlib.evaluation), 103
internal_edge_density() (NodeClustering method), 12

K
kclique() (in module cdlib.algorithms), 79

L
label_propagation() (in module cdlib.algorithms), 64
lais2() (in module cdlib.algorithms), 79
leiden() (in module cdlib.algorithms), 65
lemon() (in module cdlib.algorithms), 80
lfm() (in module cdlib.algorithms), 81
link_modularity() (AttrNodeClustering method), 37
link_modularity() (BiNodeClustering method), 48
link_modularity() (FuzzyNodeClustering method), 24
link_modularity() (in module cdlib.evaluation), 109
link_modularity() (NodeClustering method), 12
louvain() (in module cdlib.algorithms), 65

M
markov_clustering() (in module cdlib.algorithms), 66
MatchingResult (class in cdlib.evaluation), 118
max_odf() (AttrNodeClustering method), 37
max_odf() (BiNodeClustering method), 49
max_odf() (FuzzyNodeClustering method), 25
max_odf() (in module cdlib.evaluation), 104
max_odf() (NodeClustering method), 12
modularity_density() (AttrNodeClustering method), 37
modularity_density() (BiNodeClustering method), 49

134 Index

CDlib Documentation, Release 0.1.9

modularity_density() (FuzzyNodeClustering method), 25
modularity_density() (in module cdlib.evaluation), 110
modularity_density() (NodeClustering method), 12
multicom() (in module cdlib.algorithms), 81

N
newman_girvan_modularity() (AttrNodeClustering

method), 38
newman_girvan_modularity() (BiNodeClustering

method), 50
newman_girvan_modularity() (FuzzyNodeClustering

method), 26
newman_girvan_modularity() (in module

cdlib.evaluation), 110
newman_girvan_modularity() (NodeClustering method),

13
nf1() (AttrNodeClustering method), 38
nf1() (BiNodeClustering method), 50
nf1() (FuzzyNodeClustering method), 26
nf1() (in module cdlib.evaluation), 114
nf1() (NodeClustering method), 13
nmnf() (in module cdlib.algorithms), 82
nnsed() (in module cdlib.algorithms), 83
node_perception() (in module cdlib.algorithms), 83
NodeClustering (class in cdlib), 7
normalized_cut() (AttrNodeClustering method), 39
normalized_cut() (BiNodeClustering method), 50
normalized_cut() (FuzzyNodeClustering method), 26
normalized_cut() (in module cdlib.evaluation), 103
normalized_cut() (NodeClustering method), 14
normalized_mutual_information() (AttrNodeClustering

method), 39
normalized_mutual_information() (BiNodeClustering

method), 51
normalized_mutual_information() (FuzzyNodeClustering

method), 27
normalized_mutual_information() (in module

cdlib.evaluation), 115
normalized_mutual_information() (NodeClustering

method), 14
nx_node_integer_mapping() (in module cdlib.utils), 125

O
omega() (AttrNodeClustering method), 39
omega() (BiNodeClustering method), 51
omega() (FuzzyNodeClustering method), 27
omega() (in module cdlib.evaluation), 115
omega() (NodeClustering method), 14
overlapping_normalized_mutual_information_LFK()

(AttrNodeClustering method), 40
overlapping_normalized_mutual_information_LFK()

(BiNodeClustering method), 51
overlapping_normalized_mutual_information_LFK()

(FuzzyNodeClustering method), 27

overlapping_normalized_mutual_information_LFK() (in
module cdlib.evaluation), 116

overlapping_normalized_mutual_information_LFK()
(NodeClustering method), 15

overlapping_normalized_mutual_information_MGH()
(AttrNodeClustering method), 40

overlapping_normalized_mutual_information_MGH()
(BiNodeClustering method), 52

overlapping_normalized_mutual_information_MGH()
(FuzzyNodeClustering method), 28

overlapping_normalized_mutual_information_MGH()
(in module cdlib.evaluation), 116

overlapping_normalized_mutual_information_MGH()
(NodeClustering method), 15

overlapping_seed_set_expansion() (in module
cdlib.algorithms), 84

P
Parameter (class in cdlib.ensemble), 92
percomvc() (in module cdlib.algorithms), 85
plot_com_properties_relation() (in module cdlib.viz), 123
plot_com_stat() (in module cdlib.viz), 122
plot_community_graph() (in module cdlib.viz), 121
plot_network_clusters() (in module cdlib.viz), 120
plot_scoring() (in module cdlib.viz), 123
plot_sim_matrix() (in module cdlib.viz), 122
pool() (in module cdlib.ensemble), 93
pool_grid_filter() (in module cdlib.ensemble), 95
purity() (AttrNodeClustering method), 41
purity() (in module cdlib.evaluation), 108

R
random_search() (in module cdlib.ensemble), 95
rb_pots() (in module cdlib.algorithms), 68
rber_pots() (in module cdlib.algorithms), 67
read_community_csv() (in module cdlib.readwrite), 118
read_community_json() (in module cdlib.readwrite), 119
remap_node_communities() (in module cdlib.utils), 125

S
sbm_dl() (in module cdlib.algorithms), 72
sbm_dl_nested() (in module cdlib.algorithms), 72
scaled_density() (in module cdlib.evaluation), 106
scan() (in module cdlib.algorithms), 68
siblinarity_antichain() (in module cdlib.algorithms), 90
significance() (AttrNodeClustering method), 41
significance() (BiNodeClustering method), 52
significance() (FuzzyNodeClustering method), 28
significance() (in module cdlib.evaluation), 106
significance() (NodeClustering method), 16
significance_communities() (in module cdlib.algorithms),

69
size() (AttrNodeClustering method), 41
size() (BiNodeClustering method), 53

Index 135

CDlib Documentation, Release 0.1.9

size() (FuzzyNodeClustering method), 29
size() (in module cdlib.evaluation), 106
size() (NodeClustering method), 16
slpa() (in module cdlib.algorithms), 85
spinglass() (in module cdlib.algorithms), 70
surprise() (AttrNodeClustering method), 41
surprise() (BiNodeClustering method), 53
surprise() (FuzzyNodeClustering method), 29
surprise() (in module cdlib.evaluation), 107
surprise() (NodeClustering method), 16
surprise_communities() (in module cdlib.algorithms), 70

T
to_edge_community_map() (EdgeClustering method), 55
to_json() (AttrNodeClustering method), 42
to_json() (BiNodeClustering method), 53
to_json() (EdgeClustering method), 55
to_json() (FuzzyNodeClustering method), 29
to_json() (NodeClustering method), 17
to_node_community_map() (AttrNodeClustering

method), 42
to_node_community_map() (BiNodeClustering method),

53
to_node_community_map() (FuzzyNodeClustering

method), 29
to_node_community_map() (NodeClustering method),

17
triangle_participation_ratio() (AttrNodeClustering

method), 42
triangle_participation_ratio() (BiNodeClustering

method), 53
triangle_participation_ratio() (FuzzyNodeClustering

method), 29
triangle_participation_ratio() (in module

cdlib.evaluation), 107
triangle_participation_ratio() (NodeClustering method),

17

V
variation_of_information() (AttrNodeClustering

method), 42
variation_of_information() (BiNodeClustering method),

54
variation_of_information() (FuzzyNodeClustering

method), 30
variation_of_information() (in module cdlib.evaluation),

117
variation_of_information() (NodeClustering method), 17

W
walktrap() (in module cdlib.algorithms), 71
wCommunity() (in module cdlib.algorithms), 86
write_community_csv() (in module cdlib.readwrite), 119
write_community_json() (in module cdlib.readwrite), 120

Z
z_modularity() (AttrNodeClustering method), 43
z_modularity() (BiNodeClustering method), 54
z_modularity() (FuzzyNodeClustering method), 30
z_modularity() (in module cdlib.evaluation), 111
z_modularity() (NodeClustering method), 17

136 Index

	CDlib Dev Team
	Python Module Index
	Index

