internal_edge_density(graph: <Mock id='140619399398992'>, community: object, summary: bool = True) → object

The internal density of the community set.

\[f(S) = \frac{m_S}{n_S(n_S−1)/2}\]

where \(m_S\) is the number of community internal edges and \(n_S\) is the number of community nodes.

  • graph – a networkx/igraph object
  • community – NodeClustering object
  • summary – boolean. If True it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default True.

If summary==True a FitnessResult object, otherwise a list of floats.


>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> mod = evaluation.internal_edge_density(g,communities)
  1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.