CDlib Logo
  • Overview
    • Goals
    • EU H2020
  • Installing CDlib
    • Quick install
    • Optional Dependencies
      • Advanced
    • Installing from source
      • Source archive file
      • GitHub
    • Requirements
      • Python
  • Quick Start
    • Tutorial
    • FAQ
  • Reference
    • Community Objects
      • Node Clustering
      • Fuzzy Node Clustering
      • Attributed Node Clustering
      • Biparite Node Clustering
      • Edge Clustering
      • Temporal Clustering
      • Using Clustering objects with your own algorithm
    • Community Discovery algorithms
      • Static Community Discovery
      • Dynamic Community Discovery
      • Ensemble Methods
      • Summary
    • Evaluation and Benchmarking
      • Internal Evaluation: Fitness scores
      • External Evaluation: Partition Comparisons
      • Synthetic Benchmarks
      • Networks With Annotated Communities
      • Ranking Algorithms
    • Visual Analytics
      • Network Visualization
      • Analytics plots
    • Input-Output
      • CSV format
      • JSON format
    • Utilities
      • Graph Transformation
      • Identifier mapping
  • Bibliography
    • Algorithms
    • Evaluation measures
    • Researches using CDlib
CDlib
  • Docs »
  • Reference »
  • Community Discovery algorithms »
  • Static Community Discovery »
  • cdlib.algorithms.hierarchical_link_community
  • Edit on GitHub

cdlib.algorithms.hierarchical_link_community¶

hierarchical_link_community(g_original: object) → cdlib.classes.edge_clustering.EdgeClustering¶

HLC (hierarchical link clustering) is a method to classify links into topologically related groups. The algorithm uses a similarity between links to build a dendrogram where each leaf is a link from the original network and branches represent link communities. At each level of the link dendrogram is calculated the partition density function, based on link density inside communities, to pick the best level to cut.

Supported Graph Types

Undirected Directed Weighted
Yes No No
Parameters:g_original – a networkx/igraph object
Returns:EdgeClustering object
Example:
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> com = algorithms.hierarchical_link_community(G)
References:

Ahn, Yong-Yeol, James P. Bagrow, and Sune Lehmann. Link communities reveal multiscale complexity in networks. nature 466.7307 (2010): 761.

Next Previous

© Copyright 2019, Giulio Rossetti Revision 40f3d20e.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
v0.2.6
v0.2.5
v0.2.4
v0.2.3
v0.2.2
v0.2.1
0.2.0
v0.1.9
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.